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Abstract

I report on my work done in the strontium experiment in Prof. Immanuel Bloch’s group at
the Max Planck Institute of Quantum Optics under the supervision of Dr. Sebastian Blatt,
which was part of my Master’s program at Ludwig Maximilian University of Munich. My
work is split into three main projects. I report on the development of high bandwidth
photodetectors in the strontium laboratory. I then describe the design of a fiber noise
cancellation system for the active compensation of environmental influences on a narrow-
linewidth laser coupled into a fiber. Lastly, I analyze the frequency fluctuations of our
first-generation reference cavity for frequency stabilization of the clock laser and the red
MOT laser and describe the design and construction of a second-generation reference
cavity, whose zero crossing temperature I finally determine.
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Chapter 1

Introduction and Outlook

In the last decade, strontium has become increasingly popular in the atomic physics com-
munity. Being an alkaline-earth atom, it exhibits a rich electronic structure of singlet
and triplet states allowing for a variety of applications from optical lattice clocks [1, 2]
to superradiant active clocks [3], tweezer arrays [4, 5], photoassociation of strontium
molecules [6, 7], and a continuously loaded Bose-Einstein condensate [8].

Chronologically, the atomic structure of strontium was first explored in detail while build-
ing strontium lattice clocks [9, 10]. Lattice clocks probe the narrow intercombination
line between the ¹S₀ state and the ³P₀ state, called the clock transition, with a narrow
linewidth laser (see Fig. 1.1).
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Fig. 1.1 Simplified level diagram of strontium. The clock transition connects the 1S0 state and the
3P0 state. The red MOT transition connects the 1S0 state and the 3P1 state. Lifetimes taken
from A: [11], B: [12], C: [13]
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The strive for better frequency uncertainty led to a systematic evaluation of the atomic
level structure of strontium [1] and paved the way to use strontium for the simulation of
quantum many body physics [14].

With the observation of Bose-Einstein-condensation of the bosonic isotopes of strontium
88Sr, 86Sr and 84Sr [15] and a degenerate Fermi gas of 87Sr [16], a new generation of
strontium lattice clocks based on quantum degenerate gases is now being developed [17].

In our experiment we want to apply lattice clock technology to build a novel quantum
simulator, which we will image and control with high resolution optics. With the ¹S₀ state
and the long-living ³P₀ state and their tuneout wavelengths [18, 12], we can generate
state dependent lattices for strontium atoms. To excite atoms in the ³P₀ state with high
fidelity, we need to address the atoms with a narrow-linewidth laser.

In this thesis, I report on the design of a clock laser system for quantum simulations with
ultracold strontium. To do so, I first introduce a simple model of a laser (Chapter 2)
and review basics of feedback control (Chapter 3). Furthermore, I describe the scheme
of a phase-locked loop which can provide phase-stable laser light. In Chapter 4, I re-
view the strontium laboratory design of fast photodetectors, which can be adapted to
the gain/bandwidth requirements of specific applications. In the following Chapter 5,
I describe the design and characterization of a fiber noise cancellation system used to
reduce the spectral broadening of a narrow linewidth laser through acoustic noise in an
optical fiber. I further review optical resonators and analyze the frequency stability of
our first-generation cavity system in the strontium laboratory (Chapter 6) followed by
a description of the design and construction of the second-generation cavity system in
Chapter 7. With this second generation cavity system we aim for a frequency stability of
the optical resonator of 10−15. Lastly, in Chapter 8, I explain measurements of residual
amplitude modulation of light passing an electro-optic-modulator which can cause un-
controlled frequency drifts. With two lasers stabilized to the first-generation cavity and
the second-generation cavity, respectively, I give an upper bound on the instantaneous
linewidth of the two lasers and measure the zero crossing temperature of the second-
generation optical resonator.
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Chapter 2

Model of a Laser

In this chapter we introduce a simple model for a laser to show how noise can influence
its spectrum. First, we will understand both the time-domain picture and the frequency
spectrum of a general oscillator. Using both the time-domain and the frequency-domain,
we then show how amplitude- and phase-modulation can be used to get an understanding
for noise processes. Finally, we derive how the spectral profile of a laser arises and how
to analyze the laser’s line shape.

2.1 Tools for the analysis of a periodic signal

We model the emitted electric field by a laser with the cosine function

E(t) = E0 cos (ωLt+ ϕ), (2.1)

with real amplitude E0, frequency ωL, and phase ϕ. The model describes a cosine wave
with period T = 1/(2πωL). In the following, changes in phase within ϕ = [0, 2πωLt/T )
will be allowed. Later, this model will help us to understand laser noise properties of
a narrow-linewidth laser, such as a clock laser (see Cha. 1). After introducing a more
realistic laser model in Sec. 2.4, we will see how to apply the mathematical concepts
derived in this Section.

First, we introduce the correlation function between two complex signals VA(t) and
VB(t) [19]

GVAVB (τ) = ⟨V ∗
A(t)VB(t+ τ)⟩ = lim

T→∞

1

2T

∫ T

−T
V ∗
A(t)VB(t+ τ), (2.2)

where 2T is the observation time. Within the observation time, the correlation function
measures how much the two signals VA(t) and VB(t) differ from each other, by averaging
the product of VA(t) and VB(t) but delayed by time τ .

The phase noise of a signal can be analyzed by looking at the coherence of the signal which
describes howmuch a periodic signal deviates from its original shape after a given amount
of time. In other words, a signal’s coherence is a measure for how much information of



Chapter 2 Model of a Laser 4

the original signal is lost over a time interval τ . A measure for the coherence of a complex
signal V (t) is the autocorrelation function [19]

GV V (τ) = ⟨V ∗(t)V (t+ τ)⟩ = lim
T→∞

1

2T

∫ T

−T
V ∗(t)V (t+ τ). (2.3)

To illustrate Eqn. (2.3), we consider two different signals EA and EB obeying the model
described in Eqn. (2.1). Both signals have the same amplitude E0 and frequency ωL, but
signal EB is phase-shifted from signal EA by a phase shift ∆ϕ, i.e. ϕA = 0 and ϕB = ∆ϕ.
Multiplying both signals gives

EA(t)EB(t) = E0 cos (ωLt)E0 cos (ωLt+∆ϕ) =
E2

0

2
[cos (2ωLt+∆ϕ) + cos (∆ϕ)]. (2.4)

The product EA × EB has twice the frequency of the initial signals. Signals EA, EB and
EA × EB are illustrated in Fig. 2.1(a).

The correlation function of EA and EB from Fig. 2.1(a) depends on the phase shift be-
tween the two cosine waves when averaging over a time interval t′ > t. This means that
the term ∝ cos (2ωLt) in Eqn. (2.4) averages to zero and the correlation function is only
dependent on the phase shift between the two periodic signals. Therefore, the correla-
tion function resembles a cosine at frequency f = 1/T , the frequency of both EA and
EB. Therefore one can see that the correlation function is periodically modulated by an
increase in phase shift ϕ as shown in Fig. 2.1(b).

But how can the autocorrelation function tell us something about the coherence of a
signal? Looking at the absolute value of the normalized autocorrelation function [19]

|gV V (τ)| =
∣∣∣∣⟨V ∗(t)V (t+ τ)⟩

⟨V (t)⟩2

∣∣∣∣, (2.5)

one expects |gV V (τ)| = 1 for perfectly coherent signals, because the signal does not lose
phase information over time. Hence, the signal’s autocorrelation value does not decrease.
For signals with lower coherence properties this value will decrease since phase perturba-
tions change the signal’s phase over time. The signal from Eqn. (2.1) is a perfectly coher-
ent function according to this definition even if the cosine term modulates the amplitude
of the signal. However, the amplitude of the signal goes back to its initial value after one
oscillation period. This means |gAA(τ)| = 1 when averaging over one oscillation period,
i.e. there is no decrease of coherence. A degradation of the coherence would therefore
correspond to a decreasing envelope of the amplitude of the oscillation in Fig. 2.1(b). A
detailed discussion of processes that can lead to lower coherence properties can be found
in Sec. 2.3.

Having introduced the autocorrelation function, we can also introduce the power spec-
tral density of a signal (PSD). Using the Wiener-Khinchin theorem one can relate the
autocorrelation function of a signal to its power spectral density [20]
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(a) (b)

t
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(t)
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 Á
)〉

E(t)
t
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Fig. 2.1 Illustration of the signals EA, EB and EA × EB and the autocorrelation function of signal
EA. (a) The y-axis gives the value of E(t) and the x-axis gives the time t. Traces EA and
EB show an oscillation of E(t), where EB is shifted in phase by ϕ = −π/2 with respect to
EA. The frequency of both oscillations is given by fA = fB = 1/T and the amplitude of the
oscillation is E0. Signal EA × EB corresponds to the multiplication of the red and the blue
trace. Here the frequency is fAB = 2/T and the amplitude is E0/2. (b) The y-axis gives the
expectation value of the multiplication of signal EA and EB . This value is plotted against
the phase delay in units of τ/T of the two cosine waves. The insets show the signals EA,
EB and EA × EB corresponding to the phase delay between signal EA and EB given in
the black circle superimposed on one plot.

SV V (f) =

∫ ∞

−∞
GV V (τ)e

−i2πftdτ. (2.6)

This Fourier transform of the autocorrelation function describes how the power of the
signal V (t) is distributed over frequency space, i.e. it assigns a power to each Fourier
frequency of V (t). The example function E(t) only has one single Fourier frequency.
Therefore, the PSD of the signal is a single Dirac-Delta distribution at frequency ωL. If
the signal V (t) describes a voltage, it is measured on a load resistance R. The power
measured at this load is then defined as P = V (t)2/R. Therefore the autocorrelation
function can be correlated to units of power. Fourier transforming the autocorrelation
leads to the Fourier domain of the power given in units of V2/Hz, which is a power
density over a spectral interval. Especially for periodic signals, the PSD can be useful in
determining which periodicities the signal under test contains, i.e. how many different
Fourier frequencies besides the carrier frequency contribute to the spectrum.

Another good way to picture periodic signals is to rewrite them in their phasor repre-
sentation. In Eqn. (2.1) we described a periodic signal by a cosine function. We can
express the cosine by an exponential function by plugging in Euler’s formula exp(ix) =
cos (x) + i sin (x) into Eqn. (2.1). In the phasor picture, a periodic signal is described
both by the real and the imaginary part of the exponential expression. However, we can
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measure only the real quantity

E(t) = E0Re[e
i(ωLt+ϕ)], (2.7)

where E(t) is only defined for positive frequency values ωL. The graph in Fig. 2.2 shows
the signal E(t) in a frame rotating at frequency ωL, i.e. signals with frequency ωL do not
rotate in this frame, while static signals would oscillate with frequency −ωL. The length
of the arrow is given by the amplitude of the signal and ϕ is the angle with respect to the
real axis.

Re(E)

Á

E 0

Im(E)

Fig. 2.2 Illustration of the unmodulated signal E(t) in the complex plane. On the y-axis the imagi-
nary part of the signal is plotted while on the x-axis the real part of the signal is plotted. The
phase angle ϕ of E(t) is the angle of the phasor with respect to the real axis of the signal.

We will now use the phasor picture to illustrate amplitude and phase modulation.

2.2 Amplitude and phase modulation

We now consider amplitude and phase perturbations to the ideal cosine signals, and
model them with time-varying a(t) and ϕ(t), respectively. We obtain

E(t) = E0[1 + a(t)] Re[ei(ωLt+ϕ(t))], (2.8)

but continue to switch between the real signal and its complex representation whenever it
is convenient. First, we will illustrate how to represent an additional periodic modulation
of the amplitude and the phase at one specific frequency in the frequency domain and in
the phasor picture.
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2.2.1 Amplitude Modulation

We first investigate a periodic modulation of amplitude with a(t) = m cos (ωmt), while
ϕ(t) = 0. We find

EAM(t) = E0[1 +m cos (ωmt)] cos (ωLt) (2.9)

= E0Re{eiωLt[1 +
m

2
(eiωmt + e−iωmt)]}, (2.10)

where m is called the amplitude modulation coefficient. The amplitude modulation thus
adds two sidebands at detuning ωm and a power PS = (m/2)2PC compared to the carrier
signal as sketched in Fig. 2.3(a). In the phasor picture, these sidebands are represented
by two additional arrows rotating around the arrowhead of the main phasor as sketched
in Fig. 2.3(b). The rotation direction is anticlockwise for the blue-detuned frequency
component and clockwise for the red detuned frequency component. Since there is no
phase difference between the two sidebands, they point in the same direction at t = 0.

(a) (b)

Re(E)

Á

E 0

Im(E)

−ωmωm m/2 E0

PSD

ω

Pc

ωL
ωL+ ωmωL− ωm

Ps

Fig. 2.3 Illustration of the amplitude-modulated signal. (a) Amplitude modulation of the carrier
at frequency ωL. The two sidebands at detuning ωm have power PS. (b) The amplitude
modulation is represented by phasors rotating around the arrowhead of the main phasor
with frequency ωm in opposite directions (indicated by the dashed arrows) with no phase
difference between the two sidebands. The phasors point in the same direction at time
t = 0 [21].

2.2.2 Phase Modulation

Wemodel sinusoidal phase modulation with ϕ(t) = β sin (ωmt) and a(t) = 0 in Eqn. (2.8)
and obtain
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EPM(t) = E0 cos [ωLt+ β sin(ωmt)] (2.11)

= E0Re[e
iωLteiβ sin(ωmt)] (2.12)

= E0Re[e
iωLtJn(β)

∞∑
n=−∞

einωmt], (2.13)

where Jn are Bessel functions. For small phasemodulation coefficients β ≪ 1, Eqn. (2.13)
transforms to

EPM(t) = E0Re{eiωLt[1 +
β

2
(eiωmt − e−iωmt)]}. (2.14)

The phase modulation adds two sidebands with frequency ωL − ωm and ωL + ωm both
with power PS = (β/2)2PC to the carrier as illustrated in Fig. 2.4(a). The two sidebands
have opposite signs. However, the PSD only shows the absolute value of the sidebands
in frequency space, hence the sidebands have the same sign in Fig. 2.4(a). A phase mod-
ulation of the carrier of the light at frequency ωL can therefore be seen as additional
modulation arrows on the carrier arrow. The red- and blue-detuned modulation arrows
oscillate clock- and anticlockwise around the carrier. However, the components corre-
sponding to the arrows have opposite signs and therefore point in opposite directions due
to their phase difference of ∆ϕ = π, as illustrated in Fig. 2.4(b).

(a)

Re(E)

Á

E 0

Im(E)

−ωm

ωm

m/2 E0

PSD

ω

Pc

ωL
ωL+ ωmωL− ωm

Ps

(b)

Fig. 2.4 Illustration of the phase-modulation of a signal. (a) Phase-modulation of the carrier at fre-
quency ωL. The two sidebands at detuning ωm with power PS have opposite signs. (b) The
phase modulation is represented by phasors rotating around the arrowhead of the main
phasor with frequency ωm in opposite directions (indicated by the dashed lines). The pha-
sors always point in opposite direction. [21].
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Any real noise process can neither be described exclusively by amplitude noise nor by
phase noise, but is a superposition of both. A noise process will typically also not have
one frequency component only. However, using a model where noise is only represented
by a single frequency component is a good starting point for our discussion about noise
on a periodic test signal.

Starting with the description obtained from Eqn. (2.10) and Eqn. (2.14) one has four
sidebands with different frequencies. The amplitude and phase modulation sidebands
from Fig. 2.3 and Fig. 2.4 have an angle ψ in between them for illustration purposes as
sketched in Fig. 2.5.

−ωm

ωm

Re(E)

Á

E 0

Im(E)

ψ

−ωm

ωm

Fig. 2.5 Superposition of the four phasors from both amplitude and phase modulation. The phase
modulation sidebands are displayed in blue and red while the amplitude modulation side-
bands are displayed in purple and green. The angle ψ = π/2 gives the angle between
phase and amplitude modulation [21].

One can superpose the four sidebands from these equations. There are two sidebands
with the same frequency (both for positive modulation frequency and negative modu-
lation frequency). Their phasors with possibly different amplitude rotate in the same
direction and can therefore be superposed. That means that from the four initial side-
bands from amplitude and phase rotation we can extract two effective phasors rotating
around the main phasor arrowhead as shown in Fig. 2.6(a). The angle between the for-
mer amplitude and phase modulation is now the angle between the combined amplitude
and phase modulation vectors.

The two phasors obtained by superposition of the amplitude and phase modulation pha-
sors can be further transformed, by rewriting
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EAM+PM(t) = Re(Ece
iωLt + En[e

i((ωL+ωm)t+ψ) + ei(ωL−ωm)t]) (2.15)

= Re(Ece
iωLt + Ene

i(ωL+ψ/2)[ei(ωmt+ψ/2) + e−i(ωmt+ψ/2)]) (2.16)

= Re(Ece
iωLt + 2Ene

i(ωL+ψ/2) cos(ωm + ψ/2)). (2.17)

With this formula, combined amplitude- and phase-modulation can be seen as one amplitude-
modulated phasor instead of initially four single phasors oscillating around the head of
the carrier. The projection of the resulting vector on the real or imaginary axis is depen-
dent on the phase ψ/2. A projection of the modulation arrow onto the imaginary axis
corresponds to a pure phase modulation process and the projection of the modulation
arrow onto the real axis corresponds to a pure amplitude modulation process. That is
why the angle ψ represents the ratio of phase modulation to amplitude modulation. An
illustration of this line of thought can be seen in Fig. 2.6(b).

(a) (b)

Re(E)

E 0

Im(E)

−ωm

ωm

En

ψ

Re(E)

E 0

Im(E)

2E n

ψ/2

ω m

Á Á

Fig. 2.6 Illustration of both amplitude and phase noise on a system. (a) Modulated light as de-
scribed in Eqn. (2.15) which is exemplified by two sidebands oscillating with ωm in the
oscillating frame and a phase angle ψ in between them. (b) A noise process as shown in
Fig. (a) can be transformed to a modulation of one (instead of two) sideband phasor, where
only the amplitude is modulated with frequency ωm and with angle ψ/2 between the trans-
formed phasor and the real axis [21].

No real noise process that could possibly alter the laser’s frequency characteristics only
consists of a pure amplitude/phase modulation at a single frequency. Noise processes
characteristically have multiple frequency components with different amplitude coeffi-
cients (possibly both amplitude- and phase-modulated). These processes can be illus-
trated bymultiple vectors corresponding to different frequency components with different
amplitudes oscillating around the phasor of the carrier. The multiple vector components
will add up and give an instantaneous effective modulation.

The phasor models for amplitude and phase noise modulation allows us to analyze the
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phase noise properties of electric fields also oscillating at radio frequencies. Let’s assume
we have a both amplitude and phase modulated test signal Vtest oscillating at frequencies
ωL with sidebands ωm. We compare the test signal with a reference signal Vref which
is not modulated but has the same frequency as the test signal. Typical radio-frequency
mixers can detect the instantaneous difference frequency between the test signal and the
reference signal, which corresponds to the phase and amplitude noise of the test signal
since the frequencies of both signals are equal. A spectrum analyzer (SA) or fast fourier
transform (FFT) analyzer can now the detect the real part of the power spectral density
of the signal corresponding to the amplitude (phase) modulation if the reference signal
is in (out of) phase with the test signal. By measuring both the amplitude and the phase
modulation spectrum we can determine ψ. This general technique can be applied to both
radio frequency and optical signals. We will analyze the noise generated by a fiber on a
light signal in Chapter 5.

The phasor picture developed in this Section can also account for single-frequency modu-
lations of a periodic signal as we encounter it in an acousto-optic-modulator (see Chap. 5)
or in an electro-optic-modulator (see Chap. 8). However, if a noise signal contains multi-
ple frequency components, the phasor picture becomes complex and does not give further
insights. Thus, we now model noise processes on a periodic signal with noise power spec-
tral densities.

2.3 More General Noise Processes

The relation shown in Eqn. (2.6) between the power spectral density of a periodic mod-
ulation can also be used to characterize a noise spectral density, by applying the same
formalism to arbitrary modulation functions a(t) and ϕ(t).

For instance, phase noise processes on a periodic signal are characterized by the power
spectral density

Sϕϕ(f) =

∫ ∞

−∞
Gϕϕ(τ)e

−i2πftdτ, (2.18)

whereGϕϕ(τ) = ⟨ϕ∗(t)ϕ(t+τ)⟩ is the autocorrelation function of the phase noise process
ϕ(t).

Many phase noise processes follow simple power laws as shown in Ref. [22]. As a simple
model we write the double-sided power spectral density Sϕϕ as

Sϕϕ(f) =
−4∑
i=0

bif
i, (2.19)

where each of the summands has a different power law behavior.
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The phase noise signal ϕ(t) is related to the angular frequency noise signal ω(t) via the
time derivative

ω(t) =
dϕ(t)

dt
. (2.20)

By Fourier transforming this relation we obtain

Ω(f) = 2πifΦ(f), (2.21)

where Ω = F [ω] corresponds to the Fourier transform of the angular frequency signal
and Φ = F [ϕ] corresponds to the Fourier transform of the phase signal. Using this result
we can also relate the angular frequency noise PSD to the phase noise PSD as [23]

Sωω(f) = 4π2f2Sϕϕ(f) = 4π2
−2∑
j=2

bjf
j . (2.22)

The commonly used names for the different phase noise types as well as their power-law
exponents in Eqn. (2.19) (for the exponent i) and Eqn. (2.22) (for the exponent j) are
listed in Tab. 2.1.

Exp. i of Sϕϕ(f) Exp. j of Sωω(f) Name of noise process Color of noise
0 2 White phase noise white
-1 1 Flicker phase noise pink
-2 0 White frequency noise brown
-3 -1 Flicker frequency noise blue
-4 -2 Random walk frequency noise violet

Tab. 2.1 The columns in this table describe (i) the exponents of the phase noise summands bif i; (ii)
the exponents of the frequency noise summands proportional to bjf j ; (iii) common names
of different noise processes; (iv) the commonly attributed colors to the noise processes.

White phase noise is independent of Fourier frequency, i.e. it contains all frequency
components with equal magnitude. For all other types of noise, the magnitude of noise
decreases with a power law in frequency as shown in Tab. 2.1.
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101 103

Fourier frequency (Hz)

S ω
ω
(f)

White PN Pink PN White FN Pink FN Brown FN

(b)

101 103

Fourier frequency (Hz)

S Á
Á
(f)

(a)

Fig. 2.7 Plot of the different power law behaviour of a noise source as given in Eqn. (2.19) for the
phase noise spectrum Sϕϕ(f) and the frequency noise spectrum Sωω(f). (a) This fig-
ure describes the phase noise spectrum Sϕϕ(f) plotted against Fourier frequencies on a
double-logarithmic scale. The white phase noise process [colored in both (a) and (b) in grey]
is flat for all frequencies. The other noise processes have a negative slope as it is given in
Tab. 2.1. The color scheme resembles their name in the table. (b) This figure illustrates the
frequency noise spectrum Sωω(f), which can be derived from (a) using Eqn. (2.20), plotted
on a double-logarithmic graph against frequencies. A white phase noise process in this plot
has a slope of 2. The slopes of the other noise processes are given in Tab. 2.1.

The exponents of the noise processes from Fig. 2.7 shift by +2 whether one looks at the
frequency noise spectral density or at the phase noise spectral density.

We now apply these concepts to a laser. For simplicity, we assume that the laser is lin-
early polarized. Therefore approximating the electric field of the laser with E(t) from
Eqn. (2.1) is valid. However, no laser is ideal in the sense of oscillating at one single fre-
quency ωL and without amplitude noise. Thus, the model of amplitude and phase noise
made in Sec. 2.2 is a better approximation. In Sec. 2.5.1, we present a discussion of the
influence of noise processes on a laser’s line shape.

2.4 Theory of a Laser

Lasers are quantum devices which use the energy difference between two levels spaced
in energy by EL = ℏωL to send out light at frequency ωL. The functionality of lasers is
described in detail in Ref. [24] and Ref. [25]. To understand how stimulated emission
of an electric field from a laser comes about, we first need to understand how radiation
processes in a two system can be modeled.
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2.4.1 Planck’s Law of Radiation

Planck’s law of radiation describes the mean energy density of radiation in thermal equi-
librium with a black body. To derive it we start by looking at the the Maxwell equation

∇ ·E(r, t) = 0, (2.23)

where E(r, t) is the electric field vector. The Maxwell equation implies that the electric
field is time dependent but does not depend on the position. Hence the electric field is
proportional to eiωt, where ω is the angular frequency. Since the electric field is assumed
to be periodic, it also fulfills the Helmholtz equation

∇2E(r, t) =
1

c2
d2E(r, t)

dt2
. (2.24)

A solution of the electric field which fulfills both the Maxwell and the Helmholtz equation
is given by

E(r, t) = E0Re[e
i(ωt+k·r)], (2.25)

where ϕ = k ·r describes the spatial phase of the electric field. Plugging this solution into
the Helmholtz equation gives the relation between the wave vector k and the frequency
of the electric field as

i2E0


k2x

k2y

k2z

 =
i2

c2
ω2E0


1

1

1

 . (2.26)

Hence, the wave vectors are uniform in all spatial directions and the dispersion relation
ω = ck holds.

Using Planck’s law, one can give an expression for the electromagnetic radiation inside a
cavity [25]. The electric field must vanish at the surfaces of the cavity. The cavity is as-
sumed to be cubic, where each edge has length L leading to periodic boundary conditions
on the three-component periodic signal

Ex(r, t) = Ex(t) cos (kxx) sin (kyy) sin (kzz), (2.27)
Ey(r, t) = Ey(t) sin (kxx) cos (kyy) sin (kzz), (2.28)
Ez(r, t) = Ez(t) cos (kxx) sin (kyy) cos (kzz), (2.29)

where the wave vector k limits the number of allowed modes in the cavity. A formulation
of the electric field in this way satisfies the Helmholtz equation from Eqn. (2.24) since it
is a periodic signal and also the boundary conditions if the components of k fulfill
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k = (
πl

L
,
πm

L
,
πn

L
), (2.30)

where l, m and n are integers. The solution for the electric field in Eqns. (2.27) - (2.29)
also satisfies the Maxwell equation from Eqn. (2.23) if k is perpendicular to E(t).

To derive Planck’s law of radiation we need an expression for the number of field modes
for a given energy. A frequency interval in the cavity corresponds via the dispersion
relation of a electromagnetic wave in vacuum

ω + dω = ck + c dk, (2.31)

to the absolute value of the electric field vector k and the speed of light c. Since we are
looking for the number of modes per frequency interval, we are only interested in the
absolute value of the wave vector k = |k| =

√
k2x + k2y + k2z . Therefore, we can limit our

discussion to the cavity cube in the octant where kx, ky and kz are positive. The number
of modes in a spherical shell between k and k + dk is obtained by integrating over the
surface of the spherical shell in the first octant. By adding a factor 2 for the two possible
polarizations of the light we get the the number of modes in the cavity

nmodes =
2

8

4πk2dk

(π/L)3
. (2.32)

For our further derivations we are interested in the field mode density, i.e. we want to
divide out the cavity volume from Eqn. (2.32) and we use the dispersion relation ω = ck.
Therefore Eqn. (2.32) transforms to the density of field modes

p(ω)dω =
ω2dω

π2c3
. (2.33)

After arriving at an expression for the number of modes per frequency interval we would
like to find an expression for the number of photons per mode.

Reference [24] gives an approach to derive this result. First, we consider photons carry-
ing energy Eph = ℏωph. The probability distribution for n photons with energy E = ℏω
is proportional to the Boltzmann factor exp (−nℏω/kBT ) as the photons are in thermal
equilibrium with a black body radiator at temperature T . This corresponds to the proba-
bility of a state with energy nEph in a canonical ensemble with the energy of the system
being

∑∞
n=0 e

−nℏωph/kBT . The mean number n of photons at frequency ωph is then given
by

n =

∑∞
n=0 ne

−nℏωph/kBT∑∞
n=0 e

−nℏωph/kBT
=

1

eℏωph/kBT − 1
, (2.34)
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where the second part of the equation is evaluated using a geometric series.

Finally, we can combine the number of modes per frequency interval from Eqn. (2.33),
the number of photons per mode from Eqn. (2.34), and the energy per photon Eph = ℏω
to obtain the energy spectral density of electromagnetic radiation

W (ω)dω =
ℏω3

π2c3
1

exp (ℏω/kBT )− 1
dω, (2.35)

where ω describe the Fourier frequencies, ℏ is the reduced Planck constant, kB is the
Boltzmann constant and T corresponds to the temperature of the black body emitting
electromagnetic radiation. This equation, which is called Planck’s law of radiation, gives
us a tool to describe a radiative process inside a cavity between a system which can
provide for photons and a thermal bath and the system itself.

2.4.2 Einstein’s Coefficients Describing a Laser

A two level system of atoms in a ground and an excited state, where photons can mediate
a transition between the two states can be modeled with the theory of Einstein coeffi-
cients. To understand the theory of Einstein coefficients we first want to consider a two
level system inside a cavity, which consists of an excited state |2⟩ and a ground state |1⟩
with population numbers N2 and N1, respectively. In our simplified approach the two
levels are non-degenerate. We allow for an external electric field to enter the system. The
total spectral density of electromagnetic radiation from the excited state to the ground
state is then

Wtotal(ω) =Wplanck(ω) +Wexternal(ω) (2.36)

which consists of a summand which assumes that the cavity is a black body and a sum-
mand caused by the external electric field.

Transitions in the two level system can only occur if one of the following three processes
happens (as illustrated in Fig. 2.8):

(a) Spontaneous emission: A spontaneous emission process is illustrated in Fig. 2.8(a).
An atom in the excited state emits a photon with rate A21 into the full solid angle.
The frequency of the light from this process is given by the energy level difference
between the two levels ∆E = ℏω. The change in population of the excited state

dN2

dt
= −A21N2, (2.37)

is only dependent on the rate A21 and the population of the excited state N2.

(b) Absorption: An absorption process can happen when a radiative field with fre-
quency ω = ∆E/ℏ is incident on the atom. An excited atom can transit from the
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ground state to the excited state. The process will happen with rate B12Wtotal(ω).
Therefore the absorption process leads to a rate equation for the excited state

dN2

dt
= +B12N1Wtotal(ω), (2.38)

which is dependent on the population of the ground state N1.

(c) Stimulated Emission: The presence of radiation can also enhance the emission
of photons from the two level system. If an atom is in the excited state and a
photon with wave vector k, frequency ω, and a specific polarization is incident on
the atom, the atom can emit photons with rateB21⟨Wtotal(ω)⟩. The emitted photons
have the samewave vector k, frequency ω, and the same polarization as the incident
photons. In addition, the emitted light also has the same phase as the incident light.
The stimulated emission process gives a rate equation for the excited state

dN2

dt
= −B21N2Wtotal(ω), (2.39)

which is dependent on the population of the excited state N2.

(a) (b) (c)
|2>

|1>

|2>

|1>

|2>

|1>
Spontaneous 

Emission
Absorption Stimulated 

Emission

∆E

Fig. 2.8 Illustration of transition processes in a two level system consisting of the non degenerate
ground state |1⟩ and excited state |2⟩ with number populations N1 and N2, respectively.
Incident photons are blue and outgoing photons are red. The black arrow denotes the di-
rection of transition. (a) An atom occupying the excited state |2⟩ emits a photon with wave-
length ωL = ∆E. The direction of emission for the photon is equal over the full solid angle.
(b) An atom occupying the ground state |1⟩ transits from the ground state to the excited if it
can absorb a photon with a frequency ωL = ∆E. (c) A Photon absorbed by an atom in the
excited state |2⟩ stimulates the emission of another photon with the same wave vector k,
polarization and phase.

If we can make sure that a steady-state population inversion exists in the system, i.e.
N2/N1 > 1, then a continuous stimulated emission in this system can take place, which
allows us to build a laser based on such a system.
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However, the model of a simple two level system is not sufficient to describe a population
inversion in a laser. For a population inversion we need to add a second excited state |3⟩
with a higher energy than the first excited state |2⟩ to our model. A pump excites atoms to
the second excited state |3⟩. The atoms decay from the second excited state |3⟩ to the first
excited state |2⟩. With the correct choice of the Einstein coefficients A21, B21 and B12 we
can achieve a population inversion of the first excited state |2⟩ compared to the ground
state [25]. Stimulated emission from the excited state is generated by reflecting photons
from two mirror the active region. This ingredient of our laser is called the laser-cavity.

The total transition rate from the excited state to the ground state for stimulated emis-
sion is described in Eqn. (2.39). We now want to look at the frequency distribution of
this transition. The stimulated emission produces phase stable photons with the same
polarization, wave vector and frequency as the incoming atom and we assume the laser
to be in a steady state in the lasing condition. This means that we assume that there are
constantly photons stimulating the two level system, but the photons emitted from the
system stay coherent. A fully coherent output is an idealized approach to think about the
laser system. For narrow spectral distributions of the energy spectral density Wtotal(ω)
the output of the the stimulated emission spectra can be modeled by

dN2

dt
= −B21N2

∫
g(ω)Wtotaldω, (2.40)

where the line shape function g(ω) is a normalized function representing any broaden-
ing mechanism on the light and Wtotal(ω) is assumed to be Dirac-Delta-distributed in
frequency space since it is spectrally more narrow than the line shape function g(ω).

In the next Section we will discuss about which noise processes can broaden the spec-
trum of a laser and therefore change the spectral emission characteristics of a laser. As a
starting point we assume that the laser radiation is almost monochromatic. However, we
will modulate phase noise onto the laser which will broaden the line shape of the laser.
The laser under investigation will be linearly polarized, such that the electric field is

E(t) = E0Re[e
i(ωLt+ϕ(t))], (2.41)

where ϕ(t) is the time-dependent phase noise on the system which will be characterized
in the next Section.

2.5 Noise Processes on a Laser

Phase noise can significantly broaden the line shape of a monochromatic laser.
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We will characterize the phase noise by low-pass-filtered white frequency noise, which is
described by a flat angular frequency power spectral density as shown in Fig. 2.7. The
low-pass-filtered white frequency noise can be expressed as

Sωω(f) = b0f
0 = b0; f ≪ fc, (2.42)

Sωω(f) = 0; f ≫ fc, (2.43)

which is constant up to the cutoff frequency fc, but vanishes for frequencies f ≫ fc.

Using this definition of frequency noise to model the phase noise ϕ(t) of the laser, we can
develop a formalism to calculate the line shape function g(ω) for a given cutoff frequency
fc. With this model we will be able to explain both Gaussian and Lorentzian line shapes
of a laser [26–28].

2.5.1 Formalism to Understand Line Shapes from Noise Processes

Assuming the model given in Eqn. (2.41) we calculate the autocorrelation function of
this signal as

GEE(τ) = ⟨E(t)E(t+ τ)⟩ (2.44)
= E2

0 exp(iωLτ)⟨exp{[i(ϕ(t)− ϕ(t+ τ)]}⟩ (2.45)

= E2
0 exp(iωLτ) exp{−

1

2
⟨[ϕ(t)− ϕ(t+ τ)]2⟩}. (2.46)

In the last line the Gaussian moment theorem for the Gaussian process ϕ(t) was applied,
which ensures that the odd moments of the Gaussian process vanish [27].

References [27, 28] expand ⟨[ϕ(t)− ϕ(t+ τ)]2⟩ further to eventually obtain the autocor-
relation function

GEE(τ) = E2
0 exp (iωLτ) exp [−2

∫ ∞

0
Sωω(f)

sin2 (fτ)

f2
df ]. (2.47)

This autocorrelation function can be Fourier-transformed to obtain the power spectral
density of the electric field

SEE(f) = 2

∫ ∞

−∞
exp (−i2πfτ)GEE(τ). (2.48)

This power spectral density of the electric field can be used to derive the line shape of
a laser. If we plug in the noise spectral density Sωω(f) into Eqn. (2.47), we obtain the
autocorrelation function
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GEE(τ) = E2
0e

(iωLτ)e
−2

b0
fc

[sin2 (πfcτ)−πfcτ
∫ 2πfcτ
0 2πfcτ ]. (2.49)

Unfortunately, this integral is not easy to Fourier-transform analytically. However, there
are two limits in which we can Fourier-transform the autocorrelation function to obtain
the power spectral density of the signal.

2.5.2 Lorentzian Line Shape of a Laser

If we approximate the frequency noise power spectral density Sωω(f) to be flat over the
full frequency space, i.e. the cut off frequency fc → ∞, we obtain a Lorentzian power
spectral density

SL
EE(f) = |E0|2

b0
(πb0/2)2 + (f − f0)2

, (2.50)

when applying theWiener-Khinchin theorem to the autocorrelation function in Eqn. (2.49).
The full width half maximum of this Lorentzian is FWHM = πb0. Therefore the power
spectral density of a process which is flat in frequency space will lead to a Lorentzian
spectrum. Figure 2.9(a) shows the white frequency spectrum with the scaling factor b0.
The shape of the Lorentzian function is shown in Fig. 2.9(b). Here one can see that
the wings of the Lorentzian function are fairly prominent compared to the resonance,
especially if we later compare the Lorentzian function to the Gaussian function.

(a)

b0

S E
E(f

)

Fourier frequency (Hz)

(b)

πb0

log Fourier frequency

log Sωω(f)

Fig. 2.9 Illustration of a Lorentzian power spectral density of the electric field caused by a flat fre-
quency noise spectrum. (a) The frequency noise power spectral density Sωω is plotted
against the Fourier frequency. The white frequency noise in this plot is flat in frequency
space with the scaling factor b0. The blue shaded area indicates how much integrated fre-
quency noise is incident on the laser. (b) The power spectral density of the electric field has
a Lorentzian line shape if ϕ(t) is a Gaussian noise process. The full width half maximum
value of the Lorentzian function is given by πb0.
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We chose the approach from Eqn. (2.49) to find a general function for a white frequency
noise process to derive the Lorentzian line shape of the electric field. However, there
is also a more intuitive approach to derive the Lorentzian line shape of the laser [26].
Assuming that the mean phase jitter ⟨∆ϕ2(τ)⟩ = ⟨[ϕ(t)− ϕ(t+ τ)]2⟩ is a stationary Gaus-
sian process and therefore is normally distributed, we can assume the phase jitter

⟨∆ϕ2(τ)⟩ = πb0
2

|τ | (2.51)

to be proportional to the time delay. This corresponds to Brownian motion, where the
variance of the phase (the phase jitter) increases linearly with time. Using Eqn. (2.51),
we can compute the power spectral density of the signal as the Fourier transform of the
autocorrelation function

GEE(τ) = |E|2e−
1
2
⟨∆ϕ(τ)2⟩eiωLτ = |E|2e−πb0/2|τ |eiωLτ . (2.52)

The result of this transformation gives the Lorentzian line shape from Eqn. (2.50) again.
A Lorentzian line shape of a laser is therefore obtained if the frequency noise on the laser
is constant over all frequencies.

2.5.3 Gaussian Line Shape of a Laser

If we approximate the frequency noise power spectral density Sωω(f) to have only very
low-frequency components, i.e. fc → 0, applying theWiener-Khinchin theorem to Eqn. (2.44)
will give a Gaussian line shape of the spectrum

SG
EE(f) = |E0|2(

2

πb0fc
)1/2 exp [−(f − f0)

2

2b0fc
]. (2.53)

The full width half maximum of this Gaussian is FWHM = 2
√

2 ln(2)b0fc.
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Fig. 2.10 Illustration of a Gaussian spectrum of the electric field caused by a low pass filtered flat
frequency noise spectrum. (a) The frequency noise spectrum Sωω is plotted against the
Fourier frequency. The white frequency noise in this plot is flat in frequency space with the
scaling factor b0 up to the cutoff frequency fc. The blue shaded area shows the integrated
phase noise. (b) The power spectral density of the electric field has a Gaussian line shape
if ϕ(t) exhibits the noise properties from Fig. (a). The full width half maximum value of the
Gaussian function is 2

√
2 ln(2)b0fc.

An important remark to make is that the Lorentzian and Gaussian line shape functions
S
L/G
EE (f) are not easily comparable even though their definitions contain the same co-

efficients. However, the coefficient b0 in Eqn. (2.50) must be related to the integrated
frequency noise spectrum over all frequencies whereas for the Gaussian function the scal-
ing factor b0 is related to the cutoff frequency fc and therefore leads to a much smaller
integrated frequency noise.

After deriving the two analytic limits of line shapes that can be obtained from white
frequency noise on the phase ϕ(t) of the laser, we want to discuss in the next Section how
the line shape results derived in this Section can be connected to the noise properties of
a real laser.

2.5.4 Discussion of Line Shapes in Real Lasers

White frequency noise in a laser can be attributed to the spontaneous emission of light
of excited state of the laser system as described in Eqn. (2.37). A spontaneous emission
event emits a photon with a certain energy Esp = ℏωsp at a random time into a random
direction. We assume the emission of a photon to be a white frequency noise process.
Therefore the linewidth of the Lorentzian described in Fig. 2.9 has a finite contribution
from this process, called the Schawlow-Townes limit [24, 26]. The Schawlow-Townes
limit is a fundamental lower limit on the linewidth of a free running laser. However, this
white frequency noise can be reduced by active frequency stabilization of the laser [24].
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The Gaussian line shape derived in the previous Section [see Eqn. (2.53)] is attributed to
low-pass-filtered white frequency noise. Most of the technical noise sources on the laser,
i.e. any noise induced by the environment around the laser (acoustic noise, mechanical
vibrations, thermal fluctuations), is low-frequency noise. As an approximation one can
simulate these noise sources, with the low-pass-filtered white noise from Fig. 2.10(a).
Therefore extracting the Gaussian line shape of a laser gives us insight into the technical
noise properties of the laser.
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Chapter 3

Feedback Theory and Electronics

Low noise properties of a laser can be obtained by active control of its output spectrum.
The response time of the control system and the added noise of the control system then
determine the phase noise properties of the controlled laser.

In this Chapter we introduce important feedback techniques for stabilizing lasers. To
understand how these techniques work, we first need to get familiar with the language
of control theory including the Laplace transform. We will take a look at a low-pass filter,
which is a very basic example of a linear system. This simple example is going to be very
useful for analyzing the bandwidth of our homebuilt photodetectors in Chap. 4 and also
for analyzing the temperature behavior of the cavity discussed in Chap. 7. In addition,
we will give two examples for electronic feedback loops, which will be used in Chap. 5 as
a part of a loop filter of the fiber noise cancellation. We will further explain the feedback
system of a phase-locked loop (PLL). This technique transfers the phase stability of one
oscillator to another oscillator and is the basis for the fiber noise cancellation technique.

3.1 Control System Basics

We describe a system with a periodic input signal vin(t) and a periodic output signal
vout(t) by blocks which manipulate the system linearly. Let g(t) model one of the blocks
which describe the dynamic evolution of the system. Then the system responds linearly
to the input [29]

vout(t) =

∫ t

0
g(t′)vin(t− t′)dt

′
. (3.1)

Since we are interested in the system’s reaction to an input signal, it is useful to look at
the transfer function of the system, which requires us to introduce the Laplace transform
of g(t), called G(s).
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3.1.1 Laplace Transform

In Chapter 2 we have introduced the time-domain representation and the power spectral
density of a signal. Here, we will introduce a second frequency representation of a signal.
The Laplace transformation of a time-domain signal y(t) is defined as

Y (s) = L[y(t)] =
∫ ∞

0−
y(t)e−stdt, (3.2)

y(t) =
1

2πi

∫ σ+i∞

σ−i∞
Y (s)estds, (3.3)

where the complex Fourier frequency s = σ+ iω corresponds to the Laplace transformed
time and σ is the frequency offset allowing for the treatment of damped oscillations. In
the following σ is set to zero, but in general σ has to be chosen to lie to the right of all poles
of Y (s). The Laplace transformation is thus a generalization of the Fourier transform.
In comparison with the Fourier transformation, which is defined for both negative and
positive frequencies, the Laplace transform contains only positive frequency components
and can be used to give a frequency representation of damped signals [24].

Similarly to Eqn.(2.22) we can derive the relation

L[dny(t)/dtn] = snY (s), (3.4)

which relates the Laplace transform of the derivative of a time domain signal to the time
domain signal multiplied with the frequency of the signal [30]. We can now express
the transfer function of the linear system block g(t) in the frequency domain as G(s).
Laplace-transforming Eqn. (3.1) gives a simple relation for the transfer function

G(s) =
Vout(s)

Vin(s)
. (3.5)

Applying the transfer function to a signal gives the signal’s response to the transfer func-
tion. The transfer function can both change the amplitude and the phase of the signal
but it does not change the frequency of a signal.

3.1.2 Low-pass Filter

An electronic low-pass filter of first order, which is shown in Fig. 3.1, consists of a resistor
with resistanceR and a capacitor with capacitance C. It acts as a frequency discriminator
and passes signals with a frequency lower than the cutoff frequency ω0 = 1/RC while
it damps signals with a frequency higher than the cutoff frequency. We assume that a
voltage signal vin(t) is incident on the low-pass filter and a voltage signal vout(t) leaves
the low-pass filter. Using Ohm’s law, the voltage drop between the output and input
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voltage
vout(t)− vin(t) = Ri(t), (3.6)

corresponds to a current i(t) multiplied by the resistance of the circuit. The current
through the system is connected to the voltage over the capacitor as

i(t) =
d[Cvout(t)]

dt
. (3.7)

Plugging Eqn. (3.6) into Eqn. (3.7), we obtain the time-domain representation of the
system

v̇out(t) = − 1

RC
vout(t) +

1

RC
vin(t). (3.8)

The low-pass filter acts as a linear transformation on the input signal in the Laplace do-
main, i.e. the system has a transfer function G(s) .
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Fig. 3.1 Schematic of an electrical low-pass filter and it’s transfer function. (a) The low-pass fil-
ter consists of a resistor with resistance R and a capacitor with capacitance C to ground.
Vin(t) and Vout(t) are the in- and outgoing signals respectively. (b) Bode plot of the transfer
function G(iω). The gain of the transfer function is plotted in red and has a cutoff frequency
fc. The phase angle of the transfer function is plotted in blue. For low frequencies it is zero,
for large frequencies the phase obtains a phase lag of arg G(iω) = −π/2

Laplace-transforming Eqn. (3.8) gives

sY (s) = ω0Y (s)− ω0U(s), (3.9)

where Y (s) is the Laplace-transformed output signal and U(s) is the Laplace-transformed
input signal. Substituting s = iω and solving Eqn. (3.9) for the transfer function of the
low-pass filter

G(iω) =
Y (iω)

U(iω)
=

1

1 + iω/ω0
, (3.10)

lets us express the response of the low-pass filter to arbitrary periodic signals by multi-
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plying the signal with the transfer function.

The complex transfer function of a system accounts for both the amplitude and phase
transformation of the linear system. The amplitude is defined as the absolute value of
the transfer function and the phase is defined as the angle between the imaginary and the
real part of the transfer function. Plotting both the amplitude (also called gain response)
and the phase response of the system

|G(iω)| = 1√
1 + ω2/ω2

0

, (3.11)

arg G(iω) = tan−1
{ Im [G(iω)]

Re [G(iω)]

}
= − tan−1 (ω/ω0), (3.12)

on the same frequency axis is called a Bode plot. In Fig. 3.1(b) one can see the Bode
plot representation of Eqn. (3.11). The transfer function of the system has unity gain for
low frequencies, but its gain is decreased for high frequencies. The characteristic cutoff
frequency fc gives the frequency at which the gain is half the value of the gain for low
frequencies. The phase of the output signal is in phase with the input signal for low
frequencies and aquires a −π/2 phase shift for high frequencies, i.e. the output signal
gets out of phase with the input signal.

3.2 Feedback Systems

A feedback system can be used to stabilize a output signal to a reference signal. Feedback
systems are linear systems, where a change of the output signal vout(t) at time t directly
influences the change of the output signal vout(t + τ) at a later time t + τ . The time
constant τ describes the characteristic time constant of the system. In the Laplace domain
we can describe a feedback system if the output signal Vout(s) of the system with transfer
function G(s) is compared with a stable reference signal Vref(s) in the detector with
transfer function D(s). The detector computes a linear error signal from the difference
of the reference and the output signal. This error signal gets weighted in the loop filter
with transfer function K(s) and then fed back into the modulation port of the system
G(s). A schematic of this scheme is shown in Fig. 3.2.
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Vref(s) D(s) K(s) G(s) Vout(s)

Fig. 3.2 A linear feedback system. The frequency-domain input signal Vref is compared with the
output Vout of the system G(s) in the detector D(s). The loop filter K(s) gives a weight
to the detector output D(s) and feeds the resulting signal to the modulation input of the
system G(s).

Using feedback systems we can describe so called active electronic elements - meaning
electronic devices which are the source of an electronic signal. Two examples of active
electronic circuits are discussed in the following. Both will later be useful to describe the
components of a loop filter for a phase-locked loop.

3.2.1 Basic Active Electronic Circuits using Feedback

An elementary part of analog loop filters are operational amplifiers. Using operational
amplifiers one can generate a transfer function that suits the stability requirements of a
loop filter in the feedback loop. Operational amplifiers are active electronic devices. By
adjusting the electronic elements around an operational amplifier we can manipulate the
transfer function of operational amplifiers to suit our requirements. In the following, we
review the electrical setup of an integrator, which amplifies low frequency components,
and a combination of proportional and integral gain. First, we must understand how we
can obtain a feedback condition using operational amplifiers.
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Fig. 3.3 Configurations of operational amplifiers. (a) A non-inverting operational amplifier configura-
tion. (b) An inverting operational amplifier configuration. In both cases the resistances R1

and R2 determine the gain of the operational amplifier configuration [31].

The configuration shown in Fig. 3.3(a) is a non-inverting operational amplifier configu-
ration. In this configuration the negative input terminal of the operational amplifier is
connected via resistance R1 to ground and via resistance R2 to the output of the opera-
tional amplifier. The positive input terminal is connected to the input signal. The transfer
function of this operational amplifier configuration is [31]

Gnon inv = 1 +
R2

R1
. (3.13)

Looking at Eqn. (3.13) it is clear why the operational amplifier configuration is called non-
inverting. The sign of the transfer function of the amplifier is positive and the fraction of
R2 over R1 determines the gain.

Using operational amplifiers we can also obtain negative gain of an amplifier system. A
simple inverting operational amplifier configuration is shown in Fig. 3.3(b). The transfer
function of this configuration is [31]

Ginv = −R2

R1
. (3.14)

In contrast to the non-inverting configuration the inverting configuration has a transfer
function with a negative sign determined only by the fraction of R2 over R1. The transfer
function of the two configurations is frequency-independent if we only use purely resistive
elements in the two configurations shown in Fig. 3.3.

A operational amplifier feedback system in which the transfer function is frequency in-
dependent, i.e. flat in the frequency domain, is called a proportional gain element.

However, especially for loop filters we need frequency dependent feedback loops. To re-
alize this behavior in an electronic circuit, we will use electronic elements with frequency
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dependent resistances such as capacitors and inductors. When replacing the resistors R1

and R2 of the operational amplifier configurations from above with more complex con-
figurations consisting of resistors, capacitors and inductors, the generalized resistance Z
of the replaced configurations determines the transfer function’s coefficients. The gener-
alized resistance, also called impedance, is defined for capacitors as

ZL =
1

iωC
, (3.15)

and for inductors as
ZL = iωL. (3.16)

In the followingwewant to review two different active electronic feedback configurations.
The first configuration is an integrator with high gain at low frequencies and low gain at
high frequencies. The second configuration is an proportional element with an integral
element. Additionally this configuration has a gain limiter for low frequencies. We will
understand in Chap. 5 how both feedback loops can be used in a loop filter.

3.2.2 Integral Gain

An operational amplifier in integrator configuration is shown in Fig. 3.4(a).
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Fig. 3.4 Operational amplifier in integrator configuration. (a) The operational amplifier in non-
inverting configuration has a feedback impedance consisting of the capacitor C. The feed-
back impedance and the resistor R3 determine the gain of the operational amplifier. (b) A
Bode plot of the integrator described in (a). On the x-axis the Fourier frequency of the sig-
nal is displayed. The red curve shows the gain of the integrator on a logarithmic y-axis. The
blue curve shows the phase lag induced by the integrator on a linear y-axis in degrees. The
values taken for this plot are: R1 = 10 kΩ and C = 1 nF

The operational amplifier configuration is non-inverting. Hence, it’s transfer function is
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defined as in Eqn. (3.13). The feedback impedance consists of a capacitor with capaci-
tance C. The closed loop gain of the integrator is therefore given by

G(iω) = 1 +
1/(iωC)

R1
. (3.17)

In the limit of low frequencies the term 1/ωC will diverge and in the limit of high fre-
quencies this term will vanish. Therefore also the gain will diverge for low frequencies,
while it will be at the stable value |G(iω)| = 1 for high frequencies. A detailed analysis
of the transfer function of the integrator can be found in the Bode plot in Fig. 3.4(b).
The low and high frequency values of the gain correspond to the approximations from
above. In the plot one can see that the phase lag of the loop filter on the output signal vin
is 90° for small frequencies. The low frequency components are amplified significantly.
For high frequencies the phase lag tends to 0° and the gain is unity, which means that
the output signal is in phase with the input signal and is not amplified.

3.2.3 A Combination of a Proportional Element with an Integrator

A negative feedback condition can be obtained by using an inverting operational amplifier
configuration as described in Fig. 3.3(b). From Eqn. (3.14) we can see that the transfer
function in this configuration has a negative sign.

A schematic of a proportional element with the characteristics described can be found in
Fig. 3.5(a).
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Fig. 3.5 Operational amplifier in proportional gain configuration. (a) The operational amplifier in in-
verting configuration has a feedback impedance consisting of the resistors R1, R2 and the
capacitor C. The feedback impedance together with the resistor R1 determines the gain
of the operational amplifier. (b) A Bode plot of the proportional feedback loop described in
(a). On the x-axis the frequency of the signal is displayed. The red curve shows the gain of
the proportional element on a logarithmic y-axis. The blue curve shows the phase lag in-
duced by the proportional element on a linear y-axis in degrees. The plot is a sketch of the
transfer function. For small Fourier frequencies we expect an amplification as described in
Eqn. (3.20), for high Fourier frequencies we expect a gain as in Eqn. (3.21).

The feedback impedance of the proportional gain system is given by

R|| =
1

1
R2+1/(iωC) +

1
R1

. (3.18)

Hence the transfer function of the inverting operational amplifier configuration is given
by

G(iω) = −
R||

R3
. (3.19)

For low frequencies ω the the transfer function of the system can be approximated by

Gω→0 = −R1

R3
, (3.20)

while for high frequencies the gain can be approximated by

Gω→∞ = −
R1R2
R1+R2

R3
= − R1R2

R3(R1 +R2)
. (3.21)

From Eqn. (3.20) and Eqn. (3.21) the low and high frequency limits of the proportional
element can be computed. For the gain to be (negative) unity in the low frequency regime
the ratio of R1 and R2 should be roughly 1, as can be seen from Eqn. (3.20). To get a low
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gain for high frequencies the resistor value of R2 should be fairly small in comparison
with the resistor values of R1 and R3 as can be seen in Eqn. (3.21). A plot of the gain
and the phase of Eqn. (3.18) can be depicted from Fig. 3.5.

With a proportional gain configuration as described in Fig. 3.5(b) we are able to imple-
ment negative feedback. We are also able to dampen high frequency components of the
phase detector while amplifying the low frequency components with a limited gain.

It is important to note that all calculations in this chapter are only theoretical calcula-
tions assuming that the transfer function is linear over all frequencies. The calculations
from above give a good intuition for the behavior of the PI loop. However, for real oper-
ational amplifiers, this assumption cannot be true since the operational amplifier is only
in approximation a linear device. Therefore real measurements of transfer functions will
deviate from our model. One should keep in mind that real operational amplifiers have
finite open loop gains. Hence, an integrator can at maximum amplify low frequency val-
ues with the open loop gain of the operational amplifier. Since the open loop gain is a
frequency dependent upper boundary of the integrator’s amplification, the phase lag in
this frequency region goes to zero.

3.3 Description of a Phase-locked loop (PLL)

A phase-locked loop is a feedback technique which references an oscillator to a refer-
ence oscillator and makes the two oscillators phase-stable. This can be achieved with a
feedback system as depicted in Fig. 3.6 which looks similar to the general schematic of a
linear feedback system shown in Fig. 3.2. The system with transfer function G(s) is here
represented by a voltage controlled oscillator (VCO) with a frequency modulation input.
The detector with transfer functionD(s) is replaced by an electronic phase detector. The
loop filter with transfer function K(s) consists of different operational amplifier configu-
rations. The two signals vref(t) and vVCO(t) are both cosine waves with frequencies ωref

and ωVCO. The reference is assumed to be an absolutely stable reference with frequency
ωref and no phase noise, while the VCO is oscillating at frequency ωVCO with a fluctuating
phase ϕVCO(t). Therefore it holds that

vref(t) = v0 cos(ωreft) (3.22)
vVCO(t) = v0 cos(ωVCOt+ ϕVCO(t)). (3.23)

The phase detector produces an output linearly proportional to the phase difference be-
tween the two signals vref(t) and vVCO(t). If the phase difference changes over time then
the two oscillators differ in frequency. However, the phase detector can also give a linear
discrimination signal for two oscillators if the frequency difference is within the linear
frequency regime of the phase detector. This linear phase or frequency discrimination
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signal will then be weighted using a loop filter as described in the next Section. If the
loop filter is tuned correctly, the VCO will be modulated such that the VCO tracks the
frequency and phase of the reference.

Vref(s)

Phase
detector 

Loop
 filter

Vout(s)

∆f

v

VCO with
modulation

input

v

t

Fig. 3.6 A phase-locked loop. The frequency difference between the reference signal (in red) and
the VCO signal (in blue) is compared in the phase detector. For frequency differences of the
reference signal and the output signal that are within the loop bandwidth the phase detec-
tor gives a linear error signal (see inset under phase detector). The error signal is then fed
into the loop filter which weights the error signal and then controls the VCO frequency via
the modulation port of the VCO. If the loop filter is tuned correctly, the VCO signal is follow-
ing the reference signal in the direction of the green arrows and then becomes the orange
periodic function in the inset.

A feedback loop can either amplify a fluctuation of the system or it can counteract against
the fluctuation of a signal. The VCO from our example oscillates at a higher frequency if
the voltage on the modulation input port increases and oscillates at a lower frequency if
the voltage on the modulation input port decreases. Therefore, our loop filter must make
sure that if the phase of the VCO signal is larger than the phase of the reference signal,
the loop filter outputs a negative voltage and vice versa to obtain a stable phase relation.
This counteracting of the fed back signal is called negative feedback.

The modulation bandwidth of a VCO describes how fast the VCO can change its frequency
when modulated. The loop filter also has a bandwidth specified as the frequency at which
the gain response of the loop filter is half the gain it is for low frequencies.

For the loop filter bandwidth design we have two different choices. One option is to
choose the loop filter bandwidth to be small. In this case the loop filter will have a high
gain for low frequencies and the gain will fall off quickly. Using a loop filter configuration
like this will let the VCO follow the reference only slowly, i.e. drifts and low frequency
noise fluctuations can be compensated, but high frequency fluctuations can not. If the
phase-noise properties of the VCO are good enough for the desired application, then a
low-bandwidth loop filter is a good choice. If we design the loop filter to have a high
bandwidth, the VCO will be able to follow fast frequency fluctuations of the reference.



Chapter 3 Feedback Theory and Electronics 35

This means we can not only compensate for drifts of the VCO but also for bad phase
noise properties of the VCO since in this case the negative feedback can compensate the
VCO’s phase noise relative to the reference. However, if the phase noise properties of
the reference signal are not good or influenced by spurious signals within the loop filter
bandwidth, these noise components will be transferred to the VCO signal.

Apart from the design choice for a high or low bandwidth loop filter, one must also de-
cide which transfer function profile is optimal for a phase-locked loop. The gain of the
loop filter for low frequencies should be high. If the error signal contains non-zero DC-
components then the two oscillators of the PLL are not phase stabilized, i.e. the VCO
signal has a different frequency than the reference signal. With an amplification of the
low-frequency components of the error signal, the VCO can get more quickly phase stabi-
lized to the reference oscillator. Higher frequency components of the error signal should
not be amplified as much as low frequency components, otherwise the VCO might not
end up in a stable phase relation with the reference oscillator, but rather make the PLL
unstable.

Another design consideration is the noise performance of the loop filter. Any noise in the
feedback loop will be transfered onto the VCO because it can not be discriminated from
fluctuations on the output. A loop filter should therefore be designed such that its added
noise to the system (also called noise figure of the loop filter) is small. A loop filter can
be either realized as a digital loop filter or as an analog loop filter. Digital loop filters can
have more variable transfer function profiles but are generally precision-limited because
their digital to analog converter can only resolve a discrete ratio of the voltage of their
output voltage regulator. Hence, the output signal can only change stepwise, which does
not allow for a smooth tuning of the output voltage of the digital loop filter. Thus, a
digital loop filter is less sensitive to changes of the feedback loop and also more noisy
when servoing on a specific setpoint. We decided to build an analog loop filter for the
phase-locked loop of the fiber noise cancellation because the application of the phase-
locked loops requires low noise characteristics and a fine tuning range of the feedback
loop.
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Chapter 4

The Strontium Laboratory Photodetector

This chapter gives an overview of the design of the fast photodetector developed in the
Strontium laboratory. It was initially designed by Nejc Janša [32] in 2016 and was
further developed in the subsequent years. Since then, two versions of the photodetec-
tor were developed: A low-bandwidth photodetector with high gain (in the following
called slow photodetector) mostly used for laser intensity stabilization and absorption
spectroscopy, and a high bandwidth photodetector with low gain (fast photodetector),
developed for laser frequency stabilization and beat measurements. Nejc’s version of the
photodetector (version 4.1) can be equally used for low bandwidth applications. For high
bandwidth applications the photodetector printed circuit board design was optimized to
reduce parasitic capacitance.

In this Chapter we first review the basic schematic of a photodetector. We will develop
a model for the bandwidth for the gain-bandwidth-product of a photodetector. Then we
will measure the residual parasitic capacitance on the current version of the fast photode-
tector board and give examples for possible transimpedance/bandwidth combinations for
the fast photodetector board.

4.1 The Photodetector Circuit

Our phototdetector boards consist of three different parts: The photodiode, the tran-
simpedance amplifier, and the second stage amplifiers. The three different parts are
described in the following.

4.1.1 A Model for a Photodiode

Photons from a light source can create electron hole pairs when incident on a photodiode
via the photoelectric effect [33]. However, the speed with which electron-hole pairs can
be created is finite. The capacitance of a photodiode CD, corresponding to the cut-off
frequency of the transfer function of the photodiode, is many orders of magnitude larger
than needed to detect light waves directly. Hence, photodiodes create an averaged cur-
rent corresponding to the average intensity of the light wave incident on the photodiode.
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However, photodiodes with bandwidths of several GHz are commercially available. An
equivalent circuit diagram of the photodiode is shown in Fig. 4.1.

RDCD
iD

RS

vBD

Fig. 4.1 Model of a photodiode with a current source iD, a diode D, a capacitance CD, and the
resistances RD and RS. The photodiode is biased with voltage vB. Figure adapted from
Ref. [33].

A photodiode can be modeled by a current source iD, an ideal diode D, a capacitor CD

modeling the electric charge stored by the photodiode and an output resistance modeling
the residual current flow (dark current) when biasing the photodiode. Biasing the pho-
todiode with a bias voltage vB decreases the capacitance of the photodiode. This can be
explained by an increased distance between the two depleted regions of the photodiode
where the charge carriers of the semiconductor have been diffused away. Increasing the
distance between the two depleted regions then leads to a decreased capacitance as the
two depleted regions act as a plate capacitor [33]. The output current of the photodiode
is linearly related with to incoming light power via the responsivity coefficient η.

Linearity of photodetectors used in feedback systems is essential. In the photodetector
board setup a transimpedance amplifier configuration preserves the photodiode’s signal
linearity when transferring the current signal to a voltage signal.

4.1.2 Transimpedance Amplifier

Amodel of a transimpedance amplifier configuration for a photodiode is given in Fig. 4.2.
It consists of a negatively biased photodiode, an inverting operational amplifier configura-
tion as described in Eqn. (3.14) with frequency-dependent gain A(s), a feedback resistor
determining the gain of the operational amplifier, and capacitances coupling elements of
the circuit at different positions with each other. The photodiode’s capacitance limits the
bandwidth of the photodiode. The common-mode capacitance of the CCM couples the in-
verting terminal of the operational amplifier to ground, while the differential capacitance
CDIFF couples the inverting terminal of the operational amplifier to the noninverting ter-
minal of the operational amplifier. These two capacitances are determined by the PCB
board design and will dominate the capacitance of the fast photodetector PCB in the
following.
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vout

-vbias

RF
CDIFF

CF

GND CCM

A(s)

CD

i

Fig. 4.2 Schematic of the transimpedance amplifier with open loop transfer function A(s). The in-
verting amplifier configuration has a feedback impedance consisting of RF and CF. The
photodiode is negatively biased and connected to the inverting input terminal of the oper-
ational amplifier. It’s capacitance is represented by CD. The capacitance CDIFF couples
the operational amplifiers input terminals and the capacitance CCM couples the inverting
terminal of the operational amplifier to ground. Figure adapted from Ref. [34].

A transimpedance amplifier has high-impedance input terminals. However, the nega-
tive feedback configuration of the current-to-voltage transformer described in Fig. 4.2
bypasses the operational amplifier’s negative input terminal to the output terminal of the
operational amplifier and forces the load of the photodetector to zero. Hence, there is
only very little voltage swing over the operational amplifier if the current on the photo-
diode output changes.

To explore the linear characteristics of the transimpedance amplifier let’s take a look at
the transfer function of the transimpedance amplifier configuration. An inverting opera-
tional amplifier configuration with a frequency-independent open-loop gain is described
in Eqn. (3.14). However, for our fast photodiode design with low capacitance photodi-
odes the non-infinite open-loop gain of the operational amplifier will influence the pho-
todetector’s bandwidth. Hence, the operational amplifier’s gain A(s) is modeled as a low
pass filter where the operational amplifier’s gain crossover frequency (denoted as gain-
bandwidth product GBP) is defined as the frequency of unity loop gain. The transfer
function of the transimpedance configuration is given as [34]

VO
ID

=
−ZF

1 + 1+ZF/ZG

A(s)

, (4.1)

where ZF is the feedback impedance of the operational amplifier determined by the ca-
pacitor and the resistor connected in parallel and ZG = 1/CS is the noise gain of the
system determined by the overall source capacitance [31, 34]

CS = CD + CDIFF + CCM. (4.2)
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For low frequencies the loop gain from Eqn. (4.1) is determined by the open-loop gain of
the amplifier AOL. This case is the relevant case for the slow photodetector. In the high
frequency regime, the transfer function is not so easy to evaluate. However, Fig. 4.3 gives
a sketch of the transfer function of the system.

noise 
gain

Op Amp
Open-Loop-Gain

f0fN GBP

20log10(AOL)

0 dB
log(f)fC,OL

Fig. 4.3 The gain of the transfer function of the transimpedance amplifier. The plot shows the gain
of the transfer function on the y-axis and the logarithmic frequencies of the power spectral
density on the x-axis. The gain from the operational amplifier is flat up to the cutoff fre-
quency fC,OL. The noise gain crosses 0 dB at fN. At frequency f0 the noise gain meets
the operational amplifier roll off and the total gain of the noise spectrum of the amplifier has
a maximum. The Op Amp open loop gain crosses 0 dB at the crossover frequency. Figure
adapted from Ref. [34].

The transfer function of the transimpedance amplifier consists of two components: The
operational amplifier loop gain is determined by the operational amplifier characteristics.
It has a low pass filter behavior and falls off linearly on a log-log plot of gain vs frequency
after its frequency of maximum noise gain, reaching unity gain at the gain crossover
frequency. The noise gain of the amplifier is caused by the source capacitance, increases
linearly on the log-log plot of gain vs frequency and crosses unity gain after the noise
crossover frequency [34]

fN =
1

2πRF(CF + CS)
. (4.3)

The noise gain and the operational amplifier loop gain cross at the frequency of maximum
noise gain, where the transfer function reaches a maximum. The noise gain is damped
by the operational amplifier gain for frequencies higher than the frequency of maximum
noise gain f0. The frequency of maximum noise gain in this model is given as [33]

f0 =
√
fN ·GBP, (4.4)

where the gain bandwidth product is specific for the used operational amplifier. The
bandwidth given by the frequency, where the resonance of the photodetector is decreased
by 3 dB. It is related to the frequency of maximum noise gain since the operational
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amplifier gain roll off is linear on a log-log plot of gain vs frequencies.

For our high-bandwidth photodiodes the capacitance CD is approximately half the oper-
ational amplifiers common-mode and differential capacitance (CDIFF + CCM)/2. Hence
we can assume that the transfer function of the photodiode (isolated from the tran-
simpedance amplifier) will roll off for higher frequencies than the transfer function of
the operational amplifier.

4.2 Testing the Bandwidth of the Fast Photodetector Board

Using last section’s approximations about the transfer function of the transimpedance
amplifier we can now estimate the parasitic capacitance of the current version of the
fast photodetector board. Also we will be able to give a selection criterion for the target
bandwidth of a photodetector’s transimpedance.

The signal path of the fast photodetector circuit schematic is shown in Fig. 4.4. The
voltage regulators are the same as in Nejc’s design [32].
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Fig. 4.4 Schematic of the fast photodiode version V1.1. Main features are the positive biased pho-
todiode, which is connected on the D1 slot. The transimpedance amplifier (IC1) with the
transimpedance resistor (R3 and R4) and the compensating resistor (R2) is followed by a
DC-(IC2) and an AC-coupled (IC3) second amplification stage.
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The transimpedance stage of the circuit resembles the schematic from Fig. 4.2. The pho-
todiode is connected to the inverting input of the transimpedance amplifier. The tran-
simpedance amplifier’s output and inverting input terminal are connected via the tran-
simpedance resistance. The compensating resistor ensures that the current present at
the non-inverting terminal matches the current flowing through the transimpedance re-
sistance to the inverting terminal of the operational amplifier. It is important to have a
close to zero offset voltage for small photodetector signals for intensity stabilization of
signals (refer to Ref. [33] for further reading). The transimpedance amplifier’s output
is connected to the DC-coupled monitor signal path and the AC-coupled signal output,
where high bandwidth signals can be monitored.

We wanted to test the bandwidth characteristics of our photodetector boards and built
a test setup with the Hamamatsu S5973 photodiode. This photodiode has a capaci-
tance CD = 1.6 pF at 3 V bias voltage, which corresponds to a cutoff frequency of
1 GHz. As an operational amplifier we use the OPA847 (Texas Instruments), which is a
voltage-feedback operational amplifier with a GBP = 3.9 GHz, a differential capacitance
CDIFF = 2.0 pF and a common-mode capacitance CCM = 1.7 pF. At the AC-coupled
second amplification stage we use an ERA-3+ (Mini-Circuits) amplifier. This amplifier
has a typical gain of 23.4 dB and a bandwidth of approximately 3 GHz. Hence neither the
bandwidth of the photodiode nor the bandwidth of the second stage amplifier limited us
in our test.

For our bandwidth test we first needed to demonstrate that measuring the noise power
spectral density of the photodiode is equivalent to determining the bandwidth of the
photodetector. We tested this by measuring the gain of the transfer function of a periodic
signal through the photodiode. This can be done by connecting the tracking generator
of a spectrum analyzer to the input of the transimpedance amplifier and then measuring
the transmitted signal through the transimpedance amplifier on the spectrum analyzer.
For this test we used the setup shown in Fig. 4.5(a).
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Fig. 4.5 Test setup for determining the bandwidth of the photodetector. (a) The photodiode (PD) is
connected in parallel to the tracking generator (SG) of the spectrum analyzer (SA), which is
connected in series with a 910 Ω resistor. The output of the photodiode and the tracking
generator is connected to the transimpedance amplifier (TIA). The output signal from the
transimpedance amplifier is amplified on a second amplification stage (A2) and measured
by the spectrum analyzer. Incident light on the photodiode is blocked. (b) The transfer func-
tion of the signal from the tracking generator is measured. The noise spectrum of the tran-
simpedance amplifier without the tracking generator connected but with an additional not
terminated SMA port is plotted in green. The transfered signal of the tracking generator is
connected in parallel with the photodiode and amplified by the transimpedance amplifier
as shown in red. The blue curve shows the noise power spectral density of the photodiode
without the additional SMA port. The orange dashed line indicates resonance frequency of
the transfer function. The resolution bandwidth (RBW) of the SA is 10 kHz.

In our test setup we connected the tracking generator of the spectrum analyzer (Rohde
& Schwarz FSEB 30) with the photodiode output in parallel. The tracking generator’s
output is at a constant power level but changes its frequency synchronously with the
sweep of the spectrum analyzer. Hence, with the knowledge of the knowledge of the
power level at the output of the tracking generator, the spectrum analyzer can calculate
an estimate of the transfer function of the operational amplifier.

Knowing the signal level of the tracking generator (−80 dBm) and the amplification of the
second stage of the photodetector (23 dB), we can estimate the resulting power on the
spectrum analyzer. We expect the transferred power spectral density of the tracking gen-
erator signal on the spectrum analyzer to be amplified by 23 dB plus an additional 6 dB
because the low-impedance output signal of the signal generator was measured on the
high-impedance input port of the transimpedance amplifier. Adding an additional 40 dB
on the spectrum from Fig. 4.5(b) to compensate for the subtracted resolution bandwidth
of the power signal, we obtained a spectrum analyzer signal of roughly −45 dBm on the
spectrum analyzer.

Further we can see in Fig. 4.5(b) that the maximum gain frequency of the power spectral
density of the transferred signal from the tracking generator matches with the frequency
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of maximum noise gain of the photodetector (with and without an added SMA cable).
The tracking generator is connected to the photodetector as shown in Fig. 4.5(a). Hence,
we can assume that the bandwidth obtained from the noise power spectral density of the
photodetector is a good approximation for the bandwidth of the photodetector.

With the test setup shown in Fig. 4.6(a) we can measure the noise spectra of the fast
photodetector for different transimpedance resistances.
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Fig. 4.6 Test setup for the measurement of the fast photodiode’s bandwidth. (a) The photodetector
is connected to a spectrum analyzer while the photosensitive area of the photodiode is cov-
ered. (b) Power spectral density on a logarithmic frequency axis of the photodetector with a
transimpedance resistance (TIR) of 2.0 kΩ (green trace). The spectrum analyzer noise floor
is displayed in red. The coax loop power spectral density is displayed in blue.

For this test, the photosensitive area of the photodiode on the photodetector was blocked.
The photodetector AC-coupled output was connected to the spectrum analyzer (SA). Care
was taken to not couple in electric noise at RF-frequencies by shielding the photodiode
using an anodized aluminum casing around the photodiode. The screws connecting the
photodiode to its anodized casing must be tightened to increase electrical contact and
hence shielding from the environment.

The noise power spectral density of a photodetector with a transimpedance resistance of
2.0 kΩ is shown in Fig. 4.6(b). The noise power spectral density of the photodetector is
flat for low frequencies and has a resonance at the frequency of maximum noise gain f0.
Equation (4.4) relates the frequency of maximum noise gain of the noise power spectral
density to the transimpedance of the configuration.

The frequency of maximum noise gain is a good reference value to obtain the −3 dB
bandwidth as can be seen in Fig. 4.7(a).
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Fig. 4.7 Determining the parasitic capacitance of the fast photodiode. (a) Frequencies of maxi-
mum noise gain f0 (red trace) and bandwidths (blue trace) of the fast photodetector plot-
ted against transimpedances. (b) The resonance frequencies f0 are plotted against tran-
simpedances on a log-log plot. The values are fitted using Eqn. (4.4). From the fit one ob-
tains a total capacitance of 10.6 pF.

Comparing the frequency of maximum noise gain of our setup for transimpedances from
1 kΩ to 15 kΩ gives a measure for the parasitic capacitance on the photodetector board.
Fitting Eqn. (4.4) to the obtained values gives a value for Ctot = CS + CF + CP, where
CP is the parasitic capacitance from the board design and from imperfect soldering.

The fitted capacitance of 10.6 pF contains errors not only from the uncertainty of the
fit but also from uncertainties from soldering, since we needed to resolder the tran-
simpedance resistance for each noise power spectral density. Subtracting the capaci-
tances from the photodiode and the operational amplifier, this calculation leaves us with
a parasitic capacitance of 5.3 pF. Parasitic capacities can be easily picked up at any part
of the PCB. We expect the feedback resistor to have a contribution to the parasitic capac-
itance of < 1 pF, the 100 Ω resistor between the diode and the transimpedance amplifier
to have a < 1.5 pF contribution to the parasitic capacitance, which leaves a contribution
of approximately 2 pF to the parasitic capacity from the printed circuit board and the
box surrounding it.

The parasitic capacitance on the new version of the fast photodetector can be compared
with Nejc’s version of the board [32]. Nejc measured a frequency of maximum noise
gain of approximately 45 MHz on his photodiode without additional phase compen-
sation capacitance. Solving Eqn. (4.4) for the capacitance Ctotal and plugging in the
GBP= 900 MHz of the operational amplifier LM6609 [35] and the transimpedance re-
sistance RT = 3 kΩ that Nejc used, we get an approximate value for the capacitance
of the old version of the PCB of Ctotal = 24 pF. From this value one must subtract the
input capacitance of the operational amplifier CI = 1.2 pF and the diode’s capacitance
CD = 1.6 pF to obtain the PCBs parasitic capacitance.
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The choice of transimpedance resistance of the fast photodiode should be adjusted for
the highest estimated bandwidth of the photodetector needed in the application. For
Pound-Drever-Hall frequency stabilization applications with modulation frequencies of
around 20 MHz usually bandwidths of approximately 50 MHz are more than sufficient.
Hence a 15 kΩ or 20 kΩ resistor is suggested. For higher frequency applications one
can go to low resistance values as e.g. 1.0 kΩ resistance which gives a bandwidth of
approximately 280MHz. In Fig. 4.8, a comparison of the the homebuilt fast photodetector
with transimpedance resistances of 10 kΩ, 2.4 kΩ and 1.0 kΩ and the photodetector
PD10A2 from Thorlabs with a specified bandwidth of 150 MHz is shown.
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noise floor SA
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TIR: 2.4 kΩ

Fig. 4.8 Comparison of different photodetectors. The power spectral density is plotted against a a
linear frequency x-axis. The PSD of the fast photodetectors with 1.0 kΩ transimpedance re-
sistance (TIR) (orange trace) is compared with the PSD of the fast photodetector with 10 kΩ
(purple trace), the PSD of the fast photodetector with 2.4 kΩ transimpedance resistance
(yellow) and with the Thorlabs photodetector PD10A2 with specified bandwidth of 150 MHz
(green trace). The spectrum analyzer noise is plotted in red and the coax loop power spec-
tral density is plotted in blue.

A 10 cm coax loop is measured to identify the spurious peaks of radio bands and other
noise sources on the noise power spectral density of the photodetectors (see e.g. the
radio band peak on the noise power spectral density of the Thorlabs photodetector in
Fig. 4.8.

Unfortunately comparing the homebuilt fast photodetectors and the Thorlabs fast pho-
todetectors is not so easy. The homebuilt photodetector with 2.4 kΩ transimpedance
resistance has a similar bandwidth as the Thorlabs photodetector, but a significantly
higher noise power spectral density. We do not know what the electrical schematic of the
Thorlabs photodetector looks like, but the gain of the circuit is specified as 5 kV/A for
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50 Ω impedances and the transimpedance amplifier is also of type OPA847. With the GPB
of the OPA847 one cannot obtain a frequency of maximum noise gain of 150 MHz using
a 10 kΩ transimpedance resistance (see Eqn. (4.4) with CN = 1 pF). Hence the speci-
fied gain of the Thorlabs photodetector can only be obtained by a second amplification
stage.

The homebuilt fast photodetector with a gain of 1 kΩ has a comparable noise spectrum
to the Thorlabs photodetector PD10A2 up to frequencies of approximately 100 MHz. An
approximately 6 dB higher noise spectral density of the fast photodetector is caused by a
23 dB second amplification stage which boosts the 1 kΩ gain of transimpedance amplifier
to an overall 10 kV/A gain. Hence, the 1 kΩ homebuilt photodetector has double the gain
of the Thorlabs photodetector. Converting the voltage gain to a power spectral density
gives a 6 dB difference on the power spectral density, which lets the two photodetectors
perform similarly concerning noise specifications.

However, the noise power spectral density of the homebuilt fast photodetector has a noise
peak at its frequency of maximum noise gain. This behavior deviates from an ideal low-
pass filter roll off and is caused by a high parasitic capacitance of the transimpedance
resistor for low resistor values. This mechanism can not easily be solved. Hence it is
recommended to use the photodetector board for detecting signals with frequencies well
below the unity frequency; ideally one uses the photodetector board at frequencies below
the frequency of maximum noise gain, where the noise gain is heavily suppressed. The
unity noise gain frequency fN for the 1.3 kΩ transimpedance is 6 MHz (obtained from
Eqn. (4.3) and plugging in the fitted capacitance value for the board). However, this
frequency is much lower than typical beat frequencies we use the fast photodetector for.
Hence, for typical high frequency measurements with the photodetector board we will
always have noise from parasitic capacitances on our PCB.

With the redesign of the fast photodetector we made an important improvement on the
parasitic capacitance of the photodetector circuit. We designed a general-purpose fast
photodetector which is adaptable to most photodiodes. Additionally, we can adapt the
fast photodetector circuit to match the gain and the bandwidth to the needs of the appli-
cation.
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Chapter 5

A Phase-locked Loop for Fiber Noise Cancellation

External noise processes can broaden the phase noise spectrum of a frequency stabilized
laser if the laser is exposed to perturbation processes. A change in the refractive index of
the air or of a fiber will shift the phase of the laser such that it undergoes phase fluctua-
tions. For a frequency-narrow laser this effect can be quite significant. A laser with a full
width half maximum frequency uncertainty on the order of 1 Hz can be broadened up to
the level of 1 kHz in an optical fiber [36]. With a fiber noise cancellation system we can
actively compensate for the phase shift picked up in an optical fiber.

Jun Ye kindly shared the electronic schematics for the JILA fiber noise cancellation system
with us. His design is described in Ref. [36]. We adapted his electronic schematic and
designed a new printed circuit board (PCB) on the basis of this schematic.

The aim of this section is to describe the working mechanism of the fiber noise cancel-
lation. First, we will understand how to detect noise on a laser. Then we will explain
how to describe phase noise on the fiber arm. Next, we will describe the design of a setup
which can detect phase noise induced by an optical fiber. Afterwards, the electronic setup
used to actively compensate for phase noise will be described. With a test setup we will
measure the bandwidth and noise damping performance of the first version of our fiber
noise cancellation system. Finally, we will summarize problems of the first version of the
PCB and we will discuss future improvements to the design of the electronic circuit.

5.1 Optical Heterodyne and Homodyne Mixing

In Chap. 2we discussed the lineshapes of lasers. We obtained approximate expressions for
their lineshape for different noise models. However, measuring the lineshapes of lasers is
not straightforward. The narrow linewidth transitions of strontium are in the red. In the
wavelength range from 600 nm to 700 nm corresponding to frequencies between 430 THz
and 500 THz. These frequencies are far beyond the bandwidths of any photodetectors
- our homebuilt photodetectors have bandwidths of up to 280 MHz. Hence, we can not
detect the light spectrum directly, but we need to interfere two electric fields on a pho-
todetector to gain information about their spectral profile. Let’s assume that we combine
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beams with electric fields EA and EB

EA(t) = EAa(t)Re [e
i(ωAt+ϕA(t))] (5.1)

EB(t) = EBa(t)Re [e
i(ωBt+ϕB(t))], (5.2)

with frequencies ωA and ωB, phase noise ϕA(t) and ϕB(t) and amplitude modulation a(t)
on a photodetector. The two fields are assumed to have the same polarization. Hence
the signal on the photodetector

|EA(t) + EB(t)|2 =a(t)2(|EA|2 + |EB|2)

+
√

|EA|2|EB|2a(t)2 cos[(ωA − ωB)t+ ϕA(t)− ϕB(t)],
(5.3)

corresponds to low-frequency amplitude-modulation and a standing wave at the differ-
ence frequency |ωA − ωB| of the signals EA and EB. However, we need to restrict the
model to difference frequencies |ωA − ωB| within the bandwidth of the photodetector to
be able to detect the beat of the two frequencies.

An optical heterodyne beating with two different lasers A and B on a photodiode can be
obtained with an optical setup as shown in Fig. 5.1(a).

(a) (b)

NPBS

photodetector

laser B

laser A
PBS

PBS

laser

photodetector
optical fiber

+f

-f

path A

path B

Fig. 5.1 A heterodyne and a homodyne mixing process. (a) Heterodyne mixing of two lasers. Two
Lasers A and B are overlapped on a photodotector to obtain interference between the two
lasers. (b) Fiber noise cancellation setup. The laser light is split into two interference arms A
and B at a polarizing beam splitter. Both arms are frequency-shifted in opposite directions
and one of the arms is phase modulated in an optical fiber, while the other interference arm
is unperturbed. The two interference arms are combined at a non polarizing beam splitter
and then interfere on the photodetector.

Here, the phase noise ϕA(t) and ϕB(t) on the beat signal on the photodiode can give
information of the overall phase noise both from signal EA(t) and from EB(t). The het-
erodyne mixing setup will be used in Cha. 8 to measure the phase noise properties of
our laser. Equation (5.3) can be adjusted to explain the working principle of our fiber
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noise cancellation setup. The optical setup corresponds to optical homodyne beating of
one laser as shown in Fig. 5.1(b). The laser which is split off into path A and path B is
a narrow linewidth laser with a long coherence length. Hence, path A and path B are
correlated. However, if we expose path B to a noise source ϕB(t), which is uncorrelated
with the laser, we are able to differentiate these two noise sources on the spectrum on the
photodetector. To obtain a nonzero difference frequency of light we additionally placed
frequency shifters in the two paths, which supply a frequency difference of 2f of the two
signals on the photodetector. The resulting AC-coupled signal on the photodiode is given
by

VPD,AC(t) = |EA(t) + EA′(t)|2FNC =
√
|EA|2|EA′ |2a(t)2 cos[2ft− ϕB(t)], (5.4)

assuming that the phase noise ϕA(t) in path A is negligible. The squared value of the elec-
tric field described in Eqn. (5.3) and (5.4) is converted to a voltage in the photodetector
as described in the previous Chapter.

5.2 Noise from a Fiber

A possible scenario for phase modulation on light is noise on an optical fiber caused by
fluctuations of its refractive index n. If the refractive index changes its value at a specific
length interval of the fiber, the light wave travels with a modified speed cn = c/n in this
length interval, where c is the speed of light. A local change of the speed of light will be
visible on the phase detector as the optical path length and hence phase of the laser light
will change.

If not the refractive index of the light is changed, but rather the length of the light path,
i.e. the fiber is stretched, then the optical path length of the light will also change.
These fluctuations can be seen as a change of the resonance frequency of the cavity [see
Eqn. (6.13)]. However, acoustic noise processes will dominate the noise on a fiber.

We would like to use a phase-locked loop to cancel out the phase deviations in the fiber
by modulating the negative of the phase modulation imparted by the fiber on the light.
This can either be done by changing the refractive index, changing the length of the
fiber, or by changing the frequency of the light. It turns out that the latter method is the
most practical since a frequency change (and therefore also phase change) can be easily
transferred to the light by an acousto-optic-modulator (AOM) [37]. The choice of an
AOM as a frequency and therefore phase actuator explains addition of frequency shifters
in Fig. 5.1(b). These modulators convert an applied RF frequency to a refractive index
modulation in an acousto-optic crystal. This modulation is used as a diffraction grating
to frequency-shift the diffracted laser light [24].

It is important to note that the optical fiber in Fig. 5.1(b) can also be replaced by an
arbitrary noise source. Hence the fiber noise cancellation technique can also be used to
phase lock two interfering arms of a laser, which e.g. are exposed to different vibrational
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influences, but should be common mode. However, to implement this different phase
lock scheme with our fiber noise cancellation PCB several changes, which are described
in Sec. 5.6, must be considered.

In the next Section we will explain the test setup for fiber noise cancellation.

5.3 Optical Setup

The fiber noise cancellation test setup should test the fiber noise cancellation capabilities
of our cancellation system for noise generated on the fiber. Hence, we must be able to
control the noise properties in a fiber. A fiber in a lab environment will pick up uncon-
trollable noise. However, we can make noise at different frequencies more prominent by
placing a speaker next to the fiber. In this case harmonics of the frequency of the speaker
can also be seen on the spectrum. A more direct way of analyzing the suppression of noise
from a fiber cancellation system is to actively phase-modulate the system. This can be
realized by using an electro-optic-modulator (EOM) [20]. The EOMmodulates the phase
of the electric field of the light as described in Sec. 2.2. The fiber EOM (Jenoptik PM705)
we use has a very large bandwidth, which we can use to generate phase noise on the
fiber. Additionally the fiber EOM phase modulation response is linear to the modulation
voltage within its bandwidth. This method gives us an estimate of the bandwidth of the
fiber noise cancellation setup since we directly compare how much specific frequencies
get damped.

The fiber noise cancellation test setup implements an interferometer as shown in Fig. 5.1(b).
However, the test setup is more complicated, since we need to frequency actuate the light
that goes through the fiber. The test setup is shown in Fig. 5.2 and explained in the fol-
lowing.
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Fig. 5.2 Optical setup for the test of the fiber noise cancellation system. In the in-loop setup (blue
shaded) light from a narrow linewidth laser is sent through an AOM. The red detuned trans-
mitted first order of diffraction (red beam) of the AOM is sent through an EOM, phase noise
is generated on this arm using a signal generator, and partially backreflected at a beam
splitter plate. The light then travels back through to the AOM and gets diffracted again.
The transmitted zeroth order of diffraction is retroreflected through the AOM and then blue
detuned on the negative first order diffraction of the AOM (blue beam). Both the blue and
the red beam are combined on the in-loop photodetector. The out-of-loop setup (yellow
shaded) is obtained from a beat of the laser with the single fiber pass light on the out-of-
loop photodetector. The fiber noise cancellation PCB actuates the AOM by using informa-
tion obtained by the in-loop-PD. Symbols: polarizing beam splitter (PBS), non polarizing
beam splitter (NPBS).
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Light from a narrow linewidth laser is incident on the setup. A beam sampler splits off a
beam and guides it to the out-of-loop setup. The rest of the light is sent through an AOM
(Gooch & Housego AOMO 3080-120). Here, the first order diffraction gets 80 MHz red
detuned. The beam is then polarization-cleaned with a λ/2-plate and a polarizing beam
splitter (to only keep one linear polarization) and coupled into the fiber EOM. In the
fiber EOM, the light gets modulated with a signal generator and picks up the phase noise
ϕEOM(t). The light leaving the fiber is again polarization cleaned, and then partially retro
reflected at a 70 : 30 beam splitter plate. The transmitted light through the beam splitter
plate is guided to the out-of-loop setup. Lenses with focal length ffocal = 50 mm are
used in a cat’s eye configuration [38] to achieve a good coupling efficiency in the reverse
direction through the EOM. Since the light moves with speed of light, the light picks up
the same phase noise ϕEOM(t) on the second pass through the EOM. The perturbed light
is guided back through the AOM. On the negative first order of the AOM (first order
of the back reflected light), the fiber interferometer arm is overlapped with a reference
interferometer arm which passes the AOM in the zeroth order, gets retroreflected and
then gets blue detuned in the negative first order of the AOM. The overlapped beam is
again coupled into a short polarization maintaining fiber for mode cleaning, since the
AOM has some back reflected light that stems from a non perfect AR coating on the AOM
crystal. The light incident on the fiber is again polarization cleaned and then focused
(not shown) on the in-loop photodetector.

The AC-coupled signal incident on the in-loop photodetector is given by

ViLPD(t) = V0 cos[2ft+ 2ϕAOM(t) + 2ϕEOM(t)], (5.5)

where ϕAOM(t) is the compensated phase on the light from a frequency change of the
AOM. If the fiber noise cancellation is locked, this phase shift has the same value as
ϕEOM(t), but with a different sign. If the fiber noise cancellation is not phase stabilized,
this value is not actively controlled. The beat signal on the out-of-loop photodetector is
used to extract the error signal for the phase-locked loop.

5.4 Electronic Setup

The in-loop-signal oscillating at a frequency of 2f must be mixed down to give an er-
ror signal for the loop filter. The loop filter will frequency-stabilize a voltage controlled
surfrace acoustic wave oscillator (VCSO) which actuates the AOM to a voltage controlled
crystal oscillator (VCXO). The electrical schematic is shown in Fig. 5.3.
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Fig. 5.3 Electrical setup of the fiber noise cancellation. The beat signal oscillating at 2f is mixed
down using a VCXO at the same frequency in a mixer. Then the error signal at the IF port of
the mixer is low pass filtered and sent to a loop filter. The loop filter actuates the VCSO. The
output frequency of the VCSO is frequency divided by factor two and drives the AOM via an
amplifier.

5.4.1 Choice of Oscillators

The fiber noise cancellation needs two different kinds of VCOs. The modulation oscilla-
tor must be modulated very quickly to suppress the noise picked up on the fiber, while
the reference oscillator must be very stable since the frequency shift from the first order
of diffraction on the light will in the final setup also be on the light sent through the
fiber. The light that is sent to the main experiment must be very stable in frequency
since our laser is very narrow and if the resonance frequency of the reference oscillator
changes, the overlap between the laser and the atomic transition will decrease. However,
both oscillators must have low-noise characteristics since any additional phase noise in
the feedback loop will add up and be transferred onto the light. The reference oscillator
in our application is the ABRACON ABLNO-V-156.250 [39], a voltage controlled crystal
oscillator. Its control voltage is grounded with a 2 kΩ resistor. Oscillators of this kind
usually have a very narrowband frequency spectrum. The phase noise of the crystal oscil-
lator 10 kHz detuned from the carrier is −134 dB suppressed with respect to the carrier.
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The full specification can be taken from Ref. [39]. The modulation oscillator is chosen
such that the modulation bandwidth is high. The VCSO Vectron VS-705 [40] has a mod-
ulation bandwidth of 200 kHz which is far above any acoustic noise in the laboratory. It
also has very good phase noise properties with a phase noise 10 kHz detuned from the
carrier only 20 dB higher than the phase noise from the VCXO.

The output of both oscillators is a square wave with all odd Fourier components of the
baseband oscillation at 156 MHz. However, only the baseband of the VCSO is within the
bandwidth of the AOM such that the AOM will only see a sine wave.

5.4.2 Extracting the Error Signal from the Beat Signal

We are mainly interested in the phase information of the beat signal from the in-loop-
photodetector. However, external perturbations of e.g. the amplitude of the beat signal
can change the shape of the oscillation of the sine wave. A modulated beat signal might
not correctly reproduce the phase of the beat signal. Hence, in our electronic setup we
amplify the beat signal using an RF-limiter such that signals above (below) a threshold
voltage get amplified to the upper (lower) voltage limit of the RF-limiter. The RF-limiter
sharpens the rising and the falling edges of the sine. Hence, we can determine the phase
of the beat signal more precisely.

The error signal of a phase-locked loop should be a straight line which biases the VCSO’s
frequency linearly. We can mix down the frequency of the in-loop photodetector beat
signal a double balanced mixer (DBM). The DBM mixes the voltage from the photode-
tector ViLPD with the a local oscillator at the same frequency VLO(t) = VLO cos(2ft) to
obtain the intermediate frequency voltage

VIF(t) = VLOV0 sin[2ϕAOM(t) + 2ϕEOM(t)] + (4f terms). (5.6)

Low-pass filtering this signal leaves leaves one only with the DC term. Additionally, for
small signals one can apply the small angle approximation sin(x) ≈ x to obtain for the
phase detector signal

VIF(t) = VLOV0[2ϕAOM(t) + 2ϕEOM(t)]. (5.7)

The low-pass-filtered error signal from the mixer is proportional to the phase noise pro-
cess 2ϕEOM(t) and the compensation phase shift by the AOM 2ϕAOM(t). This signal is the
output signal from the phase detector and is sent to the loop filter.

5.4.3 Proportional Integral and Derivative Controller

The loop filter of the phase-locked loop converts the error signal to a modulation voltage
of the VCSO. The VCSO will then actuate the AOM. Hence, the PI-loop is the element of
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the fiber noise cancellation system which calculates the frequency change of the VCSO
needed such that the beat signal on the in-loop-photodetector matches the frequency of
the reference crystal oscillator. Once the loop is phase stabilized, the loop filter transfers
changes of the error signal (corresponding to phase noise on the fiber) to the VCSO.

The loop filter for the fiber noise cancellation consists of three different components: the
propotional gain element P responsible for an overall amplification or damping of the
error signal, the integral gain element I for the amplification of low frequency parts of
the error signal and the high frequency amplifying gain element D. Connecting the P, I
and D components in parallel and then combining them as shown in Fig. 5.4 allows us
to tune all three elements of the control system individually, providing for an optimal
transfer function of the feedback loop [29].
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Fig. 5.4 Schematic of a PID-controller. The error signal from the double balanced mixer is weighted
by a proportional element P, an integral element I and a derivative element D with the trans-
fer functions indicated on the left. The signal from the three linear elements is combined on
the combining element

∑
of the fiber noise cancellation.

To obtain a good phase-stabilization of the VCSO to the VCXO, the PID-controller must
follow specific requirements. In the followingwe describe the design of our PID-controller.

Integrator The error signal of the double balanced mixer is a constant value if the fre-
quency of the VCXO and the beat signal is different. To phase stabilize the beat
signal to the VCXO the constant offset voltage must be reduced. To do that very
quickly, the PID-controller has an integral element, which amplifies small frequency
error signals more than high frequency elements. The integral element is imple-
mented by a non-inverting operational amplifier as described in Sec. 3.2.2. For
DC-signals the phase delay of the integrator goes to 0°, such that the VCSO and
hence the beat signal tracks the VCXO without phase delay (except for electronic
phase delays).

Design aspects for the choice of the operational amplifier are low pink frequency
noise, which describes the noise on the integral element of the PID-controller for
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small frequency and is proportional to 1/f , where f is the Fourier frequency of a
signal (1/f noise processes are described in Sec. 2.3). For our loop filter we need
the operational amplifiers to have low noise specifications to keep the overall noise
induced by the loop filter as low as possible. For the integrator especially low 1/f -
noise is important since for higher frequencies the P and the I element have a higher
gain. Furthermore the operational amplifier should have a high bandwidth to also
amplify higher frequency noise and support the P and the I element. We decided to
use the operational amplifier AD8675 (Analog Devices) as the integrator element
in our loop. The AD8675 is a low voltage noise amplifier especially in the low
frequency regime between 1 Hz and 10 Hz [41].

Derivative element The derivative element of the PID-controller lets high frequency
components of the input signal pass the systemwhile it blocks low frequency compo-
nents of the input signal. In our PID-control the derivative element is implemented
as first order high pass filter consisting of a capacitor. This capacitance value can
be varied to optimize the transfer function.

Proportional element To change the transfer function for mid frequencies - frequen-
cies between the cutoff frequency of the integrator and the cutoff frequency of the
derivative element - we can place a proportional element. The simplest propor-
tional element is a resistor, after which the transmitted voltage drops depending
on the resistance value. However, for our circuit we did not use a proportional el-
ement. Nevertheless, if needed, the circuit allows to place a resistor parallel to the
integrator and the derivative element.

Combiner Both signals from the integrator and the derivative element are summed in
the combiner. The combiner is implemented as a operational amplifier in invert-
ing configuration as described in Sec. 3.2.3. The transfer function of the combiner
should amplify the low frequency components of the input signal pre-amplified by
the integrator and also amplify the high frequency components transmitted by the
proportional element. The bandwidth of the operational amplifier chosen deter-
mines the overall loop filter bandwidth. Operational amplifiers with a high band-
width typically have higher 1/f noise figures than operational amplifiers as the
LM6626 (Texas Instruments) used for integrators [42]. Hence we want to limit the
gain of the operational amplifier for small frequencies where the amplification of
the integrator dominates. For our combiner we used the operational amplifier in
inverting configuration as described in Fig. 3.5.

The output signal obtained from the loop filter is fed into the modulation input of the
VCSO. The VCSO does not directly drive the AOM but is frequency divided and ampli-
fied.
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5.4.4 Frequency Divison and Amplifier

Once phase stabilized, the VCSO oscillates at the same frequency as the beat signal on
the in-loop photodetector. However, the PI-loop modifies the error signal such that it
adds twice the compensation phase shift to the signal at twice the frequency of the AOM.
Since the light from the laser passes the fiber on it’s way to the atoms only once, we
need to compensate only for one phase noise shift ϕEOM (t). Hence, we divide the output
frequency of the VCSO by factor 2 in the digital frequency divider and actuate the AOM
with the frequency (and phase shift) halved output signal from the VCSO

VVCSO/2(t) = VVCSO/2[ft+ ϕAOM (t) + ϕEOM (t)]. (5.8)

The output signal of the frequency divider gets amplified in an AOM-driver and then
drives the AOM.

After understanding the feedback loop of the fiber noise cancellation systemwe nowwant
to characterize the system.

5.5 Characterization of the Fiber Noise Cancellation System

Using the optical setup described in Fig. 5.2 we can generate noise on the fiber inter-
ference arm of the system with the fiber EOM. On the out-of-loop photodetector we see
a beat signal of the fiber interference arm with the unperturbed laser. If we generate
noise with the fiber EOM on the fiber interference arm, the spectrum of the beat on the
out-of-loop photodetector broadens. With the fiber noise cancellation we can actively
compensate for the broadening of the beat signal. The compensation effect of the fiber
noise cancellation against spectral broadening induced by fiber noise can be measured
with the test setup described in Fig. 5.5. Using the electronic test setup we can quantify
the bandwidth and the noise suppression of the fiber noise cancellation system.
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Fig. 5.5 Electronic setup for the test of the fiber noise cancellation. The beat signal with beat fre-
quency f on the out-of-loop photodetector is mixed down to DC with a signal generator
oscillating at frequency f and a double balanced mixer. The intermediate frequency port of
the double balanced mixer is monitored on a fast fourier transform machine.

The out-of-loop photodetector beat signal at frequency f is mixed down with a reference
oscillator, which is also oscillating at frequency f . The so obtained signal is monitored
on a fast fourier transform (FFT) machine (SRS SR760 FFT Spectrum Analyser). With
the FFT machine we can measure the power spectral density of the mixed down beat
signal. The beat signal encodes the generated phase noise from the fiber EOM. Hence we
can detect the phase noise generated by the fiber EOM on the out-of-loop photodetector.
Comparing the power spectral density on the out-of-loop photodetector when the EOM
is modulated and when the EOM is not modulated we can calculate a suppression of
noise that the fiber noise cancellation can achieve. Modulating phase noise at different
frequencies allows us to measure the bandwidth of the loop, which corresponds to the
frequency at which the suppression of noise decreases by 3 dB.

In Fig. 5.6 we modulated frequency noise at a single frequency on the optical fiber and
analyzed the effect of the fiber noise cancellation to the perturbation. The single fre-
quency noise is detected on the FFT machine and averaged over 5 power spectra. This
averaging is done for all further plots in this Section.
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Fig. 5.6 Plot of phase noise on the out-of-loop photodetector from single frequency modulation at a
frequency of 5 kHz and a voltage of 100 mV on the EOM. The plot shows the power spec-
tral density of the the mixed down signal of the out-of-loop photodetector. The peak height
of the baseband frequency noise peak with fiber noise cancellation is 20 dB suppressed
with respect to the peak height without fiber noise cancellation turned on.

The fiber noise cancellation reduces the peak height of the noise generated at a frequency
of 5 kHz and a voltage of 100 mV on the EOM by approximately 20 dB. When measur-
ing the suppression of noise peaks at different frequencies we observe a decrease of the
suppression of noise of the fiber noise for higher frequencies as can be seen in Fig. 5.7.
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Fig. 5.7 Comparing the effect of fiber noise cancellation on the peak height of single frequency
modulation at different frequencies. The peak height of the single frequency modulation
at different frequencies in the case that fiber noise cancellation is activated (blue) and deac-
tivated (red) is shown.
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We can see that the fiber noise cancellation is more effective for low frequency modula-
tions. A frequency modulation of the EOM can be compensated by 20 dB in this regime.
The effect of fiber noise cancellation decreases and eventually inverts for high frequencies
above 60 kHz. Subtracting the peak heights with and without fiber noise cancellation and
plotting them on a logarithmic frequency as in Fig. 5.8 lets us compare the effect of the
fiber noise cancellation for high frequencies with a low pass filter.
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Fig. 5.8 Plot of the suppression of frequency noise by the fiber noise cancellation system. The fre-
quency modulation peak height without and with fiber noise cancellation is subtracted and
plotted on a logarithmic Fourier frequency scale. We can approximate the bandwidth of the
loop to be roughly 20 kHz.

The gain of the fiber noise cancellations decreases for higher frequencies. Drawing the
analogy to a low-pass filter we can approximate a cutoff frequency from Fig. 5.8 of
fcutoff ≈ 20 kHz. Describing the fiber noise cancellation system as a low pass filter for
noise, the gain of the overall system breaks down after the frequency fcutoff . For higher
modulation frequencies the fiber noise compensation signal picks up a phase delay with
respect to the beat signal on the out-of-loop photodetector. If the phase delay approaches
ϕdelay = π, the fiber noise cancellation compensation is out of phase with the generated
noise and will drive an oscillation inducing more noise on the system. Hence, the sup-
pression of the fiber noise cancellation system can become negative.

fiber noise cancellation signal can stimulate noise on the system since it is out of phase
with it.
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5.6 Future Improvements of the Fiber Noise Cancellation System

In this chapter we presented the design and a test of the first version of the fiber noise can-
cellation printed circuit board (PCB). The system consists of two PCBs: one PCB where
both the VCXO and the VCSO are soldered on. Additionally, this PCB supplies for fre-
quency dividing the output of the VCSO. The other PCB contains the RF-limiter, the mixer
and the loop filter.

Bandwidth of fiber noise cancellation The fiber noise cancellation has a bandwidth
fcutoff ≈ 20 kHz and a suppression of noise within the bandwidth of the loop of
approximately 20 dB. With this suppression we can damp acoustic noise in the
environment very well. However, the VCSO of the fiber noise cancellation has a
modulation bandwidth of 150 kHz. Hence, the loop filter of the fiber noise cancel-
lation can be further optimized by changing the loop filter elements.

Crosstalking of the two oscillators With two oscillators on one PCB we saw crosstalk-
ing of the reference oscillator and the compensating oscillator. This was observed
as low frequency noise on the power spectral density of the two oscillators. There
were spurious peaks at the difference frequency of the two oscillators. Crosstalking
between the two oscillators can be reduced by separating the oscillators as much
as possible, i.e. by placing them on different PCBs and also shielding them with
electromagnetic shielding.

Low frequency noise The fiber noise cancellation system has not yet been optimized for
low frequency noise characteristics. In Fig. 5.6 we can see low frequency noise at
around 1 kHz that the fiber noise cancellation can not compensate for. It is likely
that the low frequency noise is generated in the amplifier, a standard AOM driver.
Hence, the reason of the low frequency noise should be further investigated.

The fiber noise cancellation PCB can also be used for low noise phase locks. With this
setup we can for example damp vibrations in the laboratory between to fibers of a laser
going to two different places in the optical setup. A simple way to implement this noise
damping scheme is to replace the retroreflector of the zeroth order of the AOM (see
Fig. 5.2) with another fiber (called zeroth order fiber), where we retroreflect a part of
the electric field at the other side of the fiber. The phase-locked loop will be able to reduce
the incoherent noise on light passing the two fibers to common mode noise. The fiber
noise cancellation system then controls the noise power spectral density of the light going
through the first order fiber such that it matches the noise power spectral density of the
light going through the zeroth order fiber.



Chapter 6 Stability Analysis of the First-generation Cavity 63

Chapter 6

Stability Analysis of the First-generation Cavity

The phase-locked loops described in Cha. 3 are able to phase-stabilize a laser to a ref-
erence laser. However, this technique can only improve the phase noise of the laser to
the limit of the reference laser. The Pound-Drever-Hall locking scheme instead allows
to transfer the stability of an optical resonator to a laser. Optical resonators can be very
frequency-stable such that their fractional frequency fluctuations∆ν at room temperature
can be pushed down to be on the order of [32]

∆ν

ν
= 10−15, (6.1)

which was the design goal for the first reference cavity in the Strontium laboratory.

Prior to the start of my project in the Strontium laboratory, two master students had al-
ready worked on the first iteration of a reference cavity. Nejc Janša designed the vacuum
chamber and the components inside the cavity responsible for mounting the optical res-
onator and shielding it from the environment [32]. Stephan Wissenberg took over the
project after Nejc finished his thesis and assembled and locked the red MOT (Magneto
Optical Trap) laser to the finished cavity [43]. The full reference cavity system built by
Nejc and Stephan will be referred to as the first-generation cavity in the next Sections.
The first-generation cavity is our current reference cavity for the experiment, i.e. both the
red MOT and the clock laser are locked to this cavity. However, we had a few problems
with the first-generation cavity:

We encountered a degradation of the finesse of the optical resonator which we attributed
to outgassing processes in the vacuum chamber when vacuum baking the vacuum cham-
ber. After changing the mirrors of the optical resonator we reassembled the cavity but we
did not turn on the heaters on the inside of the vacuum chamber, to which Stephan at-
tributed the finesse degrading process [43]. An additional problem of the first-generation
cavity was a sudden pressure rise in the vacuum chamber to 10−3 mbar. After pumping
out the vacuum chamber again, we only reached a pressure of 10−6 mbar.

However, we decided to build a new reference cavity with an improved design to circum-
vent the problems of the first-generation cavity.

In the beginning of this Chapter we will understand how a laser can be referenced to
an optical resonator. It will become clear that an optical resonator must be well isolated
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from its environment to obtain frequency-stable resonances. We then describe an actively
temperature-stabilized wood box that shields the cavity from the environment. Finally,
we compare the frequency fluctuations of the first-generation cavity to the fluctuations
of the environment and see that the frequency fluctuations of the first-generation cavity
can be mainly attributed to temperature fluctuations.

First we summarize the basics of optical resonators.

6.1 Optical Resonators

As discussed in Sec. 2.4.1, the solutions of an electric field in a one-dimensional optical
resonator are given by

E(r, kq) = E(t) sin (kqr), (6.2)

where kq can only take the values
kq =

πq

L
, (6.3)

with the length L of the cavity and the discrete number of modes q. The electric fieldE(t)
obeys the dispersion relation of an electromagnetic wave in vacuum ν = ck/2π. Hence
we can express the resonant frequencies of the cavity as

νq = q
c

2L
, (6.4)

where c is the speed of light. Resonant modes of the cavity are spaced by a free spectral
range defined as νFSR = c/2L.

The optical resonances can be further described by their finesse F . This quantity gives
a measure for how strict the condition from Eqn. (6.3) for real resonators is. An optical
resonator consists of two mirrorsM1 andM2 with high intensity reflectivities R1 = R2 =
R and low transmission coefficients T1 = T2 = T, spaced by the distance L. Light with
the electric field E(r, ν) is coupled into the resonator through one of the two mirrors.
The light wave between the two mirrors travels from mirror M1 to mirror M2. When
reaching mirror M2, the ratio R of the electric field will be reflected and travels back to
mirrorM1 while the transmission ratio T of the electric field will be transmitted through
mirrorM2. In Fig. 6.1(a) this process is shown.
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Fig. 6.1 Transmission through a cavity. (a) A cavity consists of mirrorsM1/2 with transmission and
reflectivity coefficients T1/2 and R1/2 respectively. The mirrors are separated by length
L. The reflected light at a mirror is represented by a red solid line. The transmitted light is
represented by a dashed line. The half circle that the electric field undergoes when being
reflected is only for illustration purposes. In reality the light beam overlaps with its reflected
counterpart. (b) The transmission peaks through a cavity with finesse 50 when scanning
over several free spectral ranges. Figures (a) and (b) adapted from Ref. [20].

This process repeats an infinite amount of times. A steady state will be reached when the
transmitted light reaches a constant value. Since the electromagnetic waves will be re-
flected from both mirrorsM1 andM2 an infinite amount of times, the electric field can be
summed up using a geometric series to obtain the light intensity in the resonator [20]

I(ν) =
Imax

1 + (2F/π)2 sin2 (πν/νFSR)
. (6.5)

Here Imax is the maximum intensity coupled into the optical resonator on resonance and
the finesse is approximated as [20]

F =
π
√
R

1−R
, (6.6)

for F ≫ 1. Equation (6.5) has the form of an Airy function and is plotted in Fig. 6.1(b) .
Hence, the finesse is a scaling factor for the Airy function’s spectral width of the resonance
frequency of an optical resonator. The higher the finesse of an optical resonator, the
narrower the resonance frequencies. The spectral width of an optical resonator can be
approximated by

∆νFWHM ≈ νFSR
F

. (6.7)

As the finesse is a measure of the reflectivity of the mirrors, we can obtain the finesse
of a resonator by measuring the transmitted power from the cavity after turning off the
light beam coupled into the cavity. In this case the system will not be in a steady state
anymore, and the light intensity stored in the cavity will be decreased at each mirror
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by a factor (1 − R). The reduction of the stored light intensity leads to a differential
equation

dI(t)

dt
= − c

L
(1−R)I(t), (6.8)

which describes the loss of intensity of the electric field in the cavity. The solution to
this differential equation is an exponential decay I(t) = I0 exp (−t/τ). Relating the time
constant of the decay of the light intensity ∆νFWHM = 1/(2πτ) to the spectral width of
the resonance one can thus calculate the finesse from the characteristic time constant τ
of the optical resonator by using Eqn. (6.7) as

F =
πcτ

L
. (6.9)

The discussion in this Section was made using principles from ray optics only. However,
real-world cavity modes are described by Hermite-Gauss-modes of light, which are de-
scribed in Ref. [43]. However, the description of the allowed modes and the finesse of an
optical resonator using Hermite-Gauss-modes (see e.g. [20]) agrees with the ray optics
approach for our purposes.

6.2 Design Criteria for the Reference Cavity Housing

A high-finesse optical resonator transmits only light within a very narrow frequency spec-
trum around its resonance. The Pound-Drever-Hall locking technique for lasers uses this
characteristic feature of an optical resonator to stabilize lasers. The principles of this tech-
nique are described in Cha. 8. However, to understand the design choices for an optical
resonator we want to anticipate the slope of the error signal ϵ of the Pound-Drever-Hall
locking technique around resonance. It is defined as [1]

ϵ =
−16F

√
PcPsL

c
(f − fR), (6.10)

where Pc and Ps are the optical powers in the carrier and the sideband respectively, f
is the frequency of the laser, and fR is the frequency of the cavity resonance. Hence we
need a high-finesse cavity to obtain a steep error signal. By using an error signal with a
steep slope the PI loop is able to keep the laser very frequency-stable since the ratio of
signal to electronic noise of the PI loop is then higher. Equation (6.10) also suggests that
the distance between the two mirrors of the cavity should be long.

Another design consideration to make for a reference cavity is the stability of the reso-
nance. The resonance frequency of an optical resonator should not drift over time, so
that one can always be sure that one locks a laser to the exact same frequency. The reso-
nance frequencies of the optical resonator are connected to the length difference between
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the mirrors via Eqn. (6.4). However, real optical resonators cannot be operated in per-
fect vacuum conditions. Hence, we must include a possible modification of the refractive
index n in Eqn. (6.4) such that it transforms to

νq = q
c

2Ln
. (6.11)

Using this relation a laser’s frequency noise can be traced back to the noise on the length
and the refractive index of the optical resonator. We will discuss several possible causes
for a length instability of the optical resonator.

6.2.1 Pressure Fluctuations

Looking at Eqn. (6.11) we express the frequency fluctuation as a fluctuation of the re-
fractive index

∆ν

ν
= −∆n

n
(6.12)

of the vacuum in between the two cavity mirrors. The change in refractive index ef-
fectively changes the optical path length Lopt = Labsn from the absolute path length.
Approximating the remaining gas in the vacuum chamber as nitrogen we can express the
fractional change of the index of refraction for a given pressure change ∆P in mbar at
30°C as [1, 32, 43]

∆n

n
= 2.65× 10−7∆P. (6.13)

Hence, we need to stabilize the pressure of our optical resonator to a level of approxi-
mately 10−8mbar to obtain a frequency uncertainty of 10−15.

6.2.2 Temperature Fluctuations

Temperature fluctuations change the frequency of an optical resonator just as pressure
fluctuations do. For a temperature fluctuation, the length of an ultra low expansion (ULE)
spacer, separating the two cavity mirrors, will change if the temperature of the system.
The length difference can be approximated in first order by

∆ν

ν
= −∆L

L
= −αCTE∆T, (6.14)

where the coefficient of thermal expansion (CTE)

αCTE =
1

L

dL

dT
(6.15)
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is defined as the coefficient which determines the fractional change in length of the optical
resonator per K. ULE glasses typically have a zero crossing temperature. At this temper-
ature, the coefficient of thermal expansion vanishes. Hence, one should temperature-
stabilize optical resonators to the zero crossing temperature. For ULE glasses the CTE
can be approximated around the zero crossing temperatures as [44]

αCTE(T ) = a(T − T0) + b(T − T0)
2. (6.16)

For ULE glasses the coefficients a and b typically take the values [44]

a ≈ 1.8× 10−9 1

K2
(6.17)

b ≈ 10× 10−12 1

K3
. (6.18)

Due to the small a and b coefficients ULE is ideally suited for the spacer material, which
maintains the length distance between the two mirrors of the optical resonator.

Looking at Eqn. (6.18) one must temperature stabilize the optical resonator to a level
of less than 1 mK to obtain a fractional frequency uncertainty of 10−15 when heating or
cooling the optical resonator to the zero expansion temperature T0.

Heat can be transferred between two solid components either via conductivity or via ra-
diation. To minimize heat transfer from the environment to the optical resonator, using
thermal shields has proven to be a suitable strategy [45]. Thermal shields act as low-pass
filters for thermal fluctuations. Reference [32] made an analogy of heat flow to electri-
cal currents. We also use this analogy where the temperature difference of two system
corresponds to the voltage difference between two systems and the electrical current
corresponds to the heat flow

P =
dQ

dt
, (6.19)

where P is the thermal power transfer of a body to the environment. We express the heat
capacity of a thermal system as

C =
Q

∆T
= mc, (6.20)

where m is the mass of the capacitance and c is the thermal conduction coefficient. The
resistance between two bodies is given by

R =
∆T

P
. (6.21)

We now want to understand how we should design our system to have good low pass
filter properties to isolate the optical resonator from any fluctuations. If a temperature
fluctuation heats up the heat shield at one spot, a high thermal conductivity of the heat
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shield can distribute the temperature fluctuation over the whole heat shield. Further-
more, if the heat shield is connected with a low contact resistance to a heat sink, which is
assumed to be at equilibrium, then the temperature fluctuation will transfer to the heat
sink. The heat capacity of the heat shield gives a time constant of this process. However,
this is not the only possible process. The heat shield can also transfer the temperature
fluctuation either via conduction or radiation to the optical resonator. This rate is de-
termined by the thermal resistance R. The thermal resistance Rcon for conduction and
radiation processes is defined as [32]

Rcon =
d

κA
, (6.22)

and depends on the thermal conductivity κ, the cross sectionA, and the thickness d of the
material for conduction processes. For radiation processes between two bodies stacked in
each other, the thermal resistance depends on the emissivity, the temperature and area of
the two bodies. The thermal resistance is small for high emissivities of the two bodies and
gets larger if one of the two bodies has a smaller emissivity coefficient [45]. For a strong
damping of high frequency processes, the heat should flow from the heat shield to the
heat sink, while it is not transferring any heat power to the optical resonator. Hence, the
thermal conductivity should be high, the emissivity of the heat shield and of the optical
resonator should be small, and the optical resonator should not be in contact with the
heat shield to avoid heat conduction.

6.2.3 Vibration Fluctuations

An optical resonator in a laboratory environment is exposed to different kinds of vibra-
tions and acoustic noise, for instance from a turbo pump or from a chiller of a laser.
The length change of a cavity resulting from any vibrations induced on the cavity can be
expressed as [46]

∆L

L
= k · a, (6.23)

where a is the acceleration vector and k is the vibration sensitivity of the optical resonator.
For horizontally mounted optical resonators one can find support points of the cavity that
minimize the the vibration sensitivity to smaller than ∆L

L /kx,y,z = 10−11/ (ms−2) [46].
However, even if the mounting structure allows for a very good vibrational insensitivity,
we also want to minimize the vibrational accelerations on the optical resonator, as the
accelerations should be slower than 10−4(ms−2) to achieve a fractional frequency stability
of 10−15.

Knowing how the environment influences the resonance frequency of the optical res-
onator, we can now analyze the thermal environment of the first-generation cavity. Since
we cannot temperature-stabilize the copper box of the first-generation cavity, it is espe-
cially important to shield the first-generation cavity from external temperature fluctua-
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tions. Hence we built an actively temperature-stabilized wood box around the vacuum
housing of the first-generation cavity.

6.3 Active Temperature Stabilization of Outside of the Aluminum
Cavity

A picture of the wood box assembled around the cavity is shown in Fig. 6.2.

Wood panels

Acoustic isolation plate

Aluminum plates with heaters

Thermistors

Aluminum profiles

Fig. 6.2 One side panel of the wood box is open. The wood box is mounted on an aluminum profile.
Acoustic shielding rubber plates are glued on the panels to obtain maximum acoustic isola-
tion properties. On the wood panels aluminium plates are mounted via stainless steel posts.
The aluminum plates are servoed on with a PI loop which uses the thermistors attached to
the aluminum panels on the right and left side of the box as sensors.

The wood box consists of 16 mm thick acoustic isolation wood BaryVam. Acoustic shield-
ing rubber plates are glued on the panels to obtain maximum acoustic isolation proper-
ties. Furthermore, the aluminum plates are mounted with steel posts on the wood plate
with two radiative Kapton heaters attached to the back of the plate. The high thermal
conductivity of aluminum allows the heat to be radiated onto the cavity homogeneously.
The active temperature stabilization of the wood box is split into two different PI loops,
the right side of the cavity (when looking at Fig. 6.2) and the left side. The reason for
this is the big hole on the top of the wood plate for the cables that need to go out of the
wood box. Hence, the right side of the wood box needs more heating power to be servoed
to the same temperature as the left side of the box.
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To estimate the effect of the wood box as a heat shield we compared the temperature
fluctuations of the thermistors on the copper box inside the aluminum chamber with the
fluctuations of the outside temperature. This was done for a time interval from March to
September in 2018, when the wood box was not yet placed and a time interval in 2019
from March to September, when the wood box was placed and the PI loop was working.
The time interval was chosen such that an air conditioning breakdown in Fall 2018 was
not considered in this measurement.

To analyze the temperature data we computed the overlapping Allan deviation (OADEV)
of the temperature data, which is computed from the standard Allan variance [47]

ADEV 2
T (τ) = σ2T (τ) =

1

2(N − 2)τ2

N−2∑
i=1

[Ti+2 − 2Ti+1 + Ti]
2, (6.24)

where Ti is the temperature data at a specific time ti andN is the number of temperature
points T . By averaging over all possible temperature-time combinations for one averaging
interval τ we get the overlapping Allan variance OAVAR of the temperature data. Taking
the square root of the overlapping Allan variance gives the overlapping Allan deviation
OADEV. This measure allows us to identify periodic processes in the temperature data.
Periodic processes with period τ will average when computing the Allan deviation for the
averaging time τ . Hence, dips of the overlapping Allan deviation for specific time intervals
indicate periodic processes with the same periodicity that influence the temperature. An
overall smaller value of the overlapping Allan deviation indicates a smaller variance of
the temperature, i.e. the system is less exposed to temperature fluctuations.

We compared the periodicity of temperature perturbations on the cavity by looking at
the overlapping Allan deviation of one of the sensors on the copper box inside the cavity
for the two time intervals in 2018 and 2019. Additionally we plotted the overlapping
Allan deviation of the temperature fluctuation on the outside of the wood box and on
the actively servoed thermistor on the aluminum plate. The overlapping Allan deviation
has dips for averaging times which coincide with the periodicity and multiples of the
periodicity of a perturbation. Looking at the trace of the ambient temperature fluctuation
in the year 2019 in Fig. 6.3,
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Fig. 6.3 Plot of the overlapping Allan deviation OADEV of the ambient temperature and the tempera-
ture inside the cavity.

we can see that the ambient temperature has a dip over the course of roughly one day.
This daily periodicity is almost not visible anymore on the sensor on the aluminum plate.
The PI loop cancels the temperature fluctuations with a characteristic time constant much
smaller than one day. The copper box on the inside of the cavity saw the daily tempera-
ture fluctuations in 2018, as can be seen from the dip very clearly. The Allan deviation
over a time interval shorter than a day is damped due to the low pass filter characteristics
of the aluminum chamber as a heat shield. However, over longer time periods the cop-
per follows temperature drifts from the environment as can be seen by the higher Allan
deviation value of the copper box than the PI box. The Allan deviation of the copper box
in the time interval 2019 is constantly lower than the time constant of the copper box
in the year 2018. Especially in the regime of one day, the averaging dip is less visible.
Therefore daily temperature fluctuations have a reduced effect. In the mid term regime of
1 day to 2 weeks the PI controlled wood box limits the Allan deviation of the copper box
while in 2018 the temperature was less stable on this timescale. Over long timescales
of 1 month and more the PI loop can not regulate the temperature of the cavity any-
more. This we attribute to external influences like a higher humidity of the laboratory in
Summer, which leads to a higher thermal conductivity of air and therefore to increased
temperature fluctuations. To interpret this data it is also important to know that the
doors surrounding the optical table were not used in the time frame in 2018, while they
were almost always closed in the time frame 2019. This change must also be considered
when comparing the datasets. However it becomes clear from the plot, that the active
temperature stabilization improves the temperature stability of the cavity over short and
mid time frames.
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With the wood box set in place, we can analyze the frequency fluctuations of the reso-
nances of the cavity.

6.4 Resonance Frequency Drift of the Cavity in the Aluminum
Housing

Using the expressions for the frequency-dependence of the resonance frequency we can
now understand the drifts of the first-generation cavity by referencing the cavity reso-
nance to the the reference in the atoms. Strontium has a narrow ¹S₀-³P₁ transition (red
MOT transition), which is used as the second stage of a two stage MOT sequence (a de-
tailed description of our MOT setup and sequence can be found in Refs. [32, 48]). To
stabilize the red MOT laser to the transition we set up a Pound-Drever-Hall frequency-
stabilization (see Cha. 8) to the resonance of the optical resonator, which is close to the
¹S₀-³P₁ transition. We further implemented AOMs in double-pass configuration [49] to
frequency shift the redMOT laser’s frequency to the ¹S₀-³P₁ transition of the atoms. Due to
the ¹S₀-³P₁ transition’s narrow linewidth of 7.4 kHz, tuning the red-MOT laser’s frequency
to obtain maximum atom number is an accurate measure for the optical resonator drift
over time.

In the following we analyzed the maximum atom number of the red MOT of the fermionic
isotope 87Sr in the time interval between April and August 2019. In the redMOT sequence
we use a stirring laser beam to maximize the atom number in the red MOT. The stirring
laser beam shuffles the populations of the hyperfine states of 87Sr in the red MOT (see
Ref. [50] for a detailed description of the laser cooling of 87Sr). We shift the frequency
of the stirring laser beam with a direct digital synthesis (DDS) device connected to a
acousto-optic modulator in double-pass-configuration.

In Fig. 6.4(a), a plot of the stirring laser’s DDS frequencies f from April to August 2019
is shown.
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Fig. 6.4 Analysis of the Resonance Frequency Drift of the Aluminum Chamber. (a) The frequency
f of the DDS channel controlling the frequency of the stirring laser beams is plotted
against the time. From a linear fit on the drift of the frequency f we obtain a drift rate of
−29.6(6) mHz/s. (b) The fitted drift rate of the optimized atom number is subtracted from
the resonance frequencies to be able to correlate the frequency changes to external in-
fluences. (c) Plot of the temperature of a thermistor inside the cavity housing against the
time. (d) Plot of the pressure at the ion pump inside the vacuum chamber against time. The
jumps of the pressure are caused by the pressure measurement accuracy of the ion pump
for pressures above 10−6 mbar. Also the logging of the pressure was turned off in August
(indicated by the dotted line).

The DDS frequency f drifts linearly over time. This drift is caused by an ongoing crys-
tallization of the glass of the optical resonator. For ULE glasses this drift is specified
to be on the scale of ∆L/L ≈ 10−16 s−1 [51], which corresponds to a frequency drift
of 40 mHz/s for light with a wavelength of 689 nm. Fitting the linear drift of the DDS
frequencies f gives a slope of −29.6(6) mHz/s. Hence, our optical resonator drifts on
a reasonable timescale. In Fig. 6.4(b) the drift of the cavity is removed from the DDS
frequencies f . The so obtained drift-free DDS frequency variation ∆f ≈ 150 kHz can be
correlated both to the pressure in the cavity (shown in Fig. 6.4(d)) and to the temperature
drift of the copper box T , which surrounds the optical resonator [shown in Fig. 6.4(c)].
The pressure increased over the observed time interval from April to August 2019 from
8 × 10−7 mbar to 1.3 × 10−6 mbar. However, this increase in pressure cannot account
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for the big temperature drifts. Plugging in the overall pressure difference in this time
interval into Eqn. (6.13) we obtain a frequency variation of 70 Hz over the whole time
interval, which is much smaller than the observed frequency variation. Hence we can
neglect pressure fluctuations as a cause for the resonance frequency fluctuations.

The temperature fluctuations in Fig. 6.4(c) can already be correlated to the frequency
fluctuations of the DDS frequency by eye.

Using Eqns. (6.14) - (6.16) we can do a back of the envelope calculation for the mag-
nitude of a frequency changes caused by fluctuations of the temperature of the alu-
minum vacuum chamber. Taking the zero crossing temperature of the optical resonator
T0 = 33°C [43] and using the a and b coefficients from Eqns. (6.17) and (6.18) we can
calculate the frequency change caused by a 0.1°C temperature change at a wavelength
of 689 nm to be approximately 700 kHz at an initial temperature of 23.2°C.

This frequency change is higher than the frequency change of 150 kHz which we ob-
served for our cavity in Fig. 6.4(b). However, the zero expansion coefficient model from
Eqn. (6.14) only holds close to the zero crossing temperature. Hence the model might
not be accurate at 23.2°C. Nevertheless this approximation of frequency drifts lets us con-
clude that temperature drifts are the main cause for the frequency drifts of the optical
resonator in the aluminum vacuum housing.
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Chapter 7

Design, Assembly and Characterization an Optical
Resonator Housing

In this Chapter we will explain the main design aspects of the second-generation cavity
housing. We show and explain the assembly process of this cavity. Finally, we compare
the thermal isolation properties of the second-generation vacuum chamber design to the
thermal isolation properties of the first-generation.

7.1 Choice of the Optical Resonator and the Support Platform

We bought an optical resonator from Stable Laser Systems for our cavity. The ULE spacer
of type 6020-4 Notched Spacer is 100 mm long. A plane mirror and a concave mirror
with a radius of curvature of 500 mm are optically contacted to the two ends of the
spacer. The cavity has a target finesse of F = 300000 for light with a wavelength of
698 nm. Stable Laser Systems measured the zero crossing temperature of the optical
resonator to be 32.75°C +- 1°C. The notched optical resonator is mounted on a support
structure made from Zerodur, a material with low CTE. The Zerodur support structure
has 10×10 mm2 pockets for Viton pads on the top side and 4×4 mm2 mm pockets on the
bottom side respectively. The Viton pads act as a vibration isolation. The pockets on top
of the Zerodur spacer reference the position of the optical resonator to a position that is
optimal to reduce vibrations of the resonator. The design of the support structure stayed
unchanged from the first-generation cavity and is described in Ref. [32].

7.2 Design of a Steel-chamber Housing for an Optical Resonator

This Section describes the design of the second-generation Strontium laboratory refer-
ence cavity. To circumvent any vacuum problems we decided to build a stainless steel
chamber vacuum housing with CF-flanges, which are suitable for ultra high vacuum ap-
plications. Another major design change was to exchange the Kapton heaters for Peltier



Chapter 7 Design, Assembly and Characterization an Optical Resonator Housing 77

elements, as Peltier elements have proven to have outgassing rates low enough to to ob-
tain pressures on the order of 10−9 mbar [52]. We avoided using any other glue than
Torr Seal, with which vacuum levels of 10−9 mbar can be reached.

A schematic of the stainless steel vacuum housing is shown in Fig. 7.1.

Ion pump

Angle valve

Viton pads

Steel vacuum chamber

Copper box

Inner heat shield

ULE-cavity

Zerodur spacer

Peltier elements

Heat sink

Fig. 7.1 Half section view of the stainless steel vacuum chamber of the reference cavity. The vac-
uum chamber contains an the copper box, which is standing on two Peltier elements. The
Peltier elements are mounted on a copper plate acting as a heat sink for the Peltier ele-
ments. Inside the copper box the Zerodur holder of the cavity is standing on Viton pads.
The second heat shield is laying on the Zerodur spacer and surrounds the ULE-cavity,
which is mounted on the Zerodur spacer with Viton pads. Attached to the cavity are the
ion pump and the angle valve.

7.2.1 Stainless Steel Vacuum Chamber

Wedecided to build the vacuum chamber from stainless steel of type AISI 304. It has good
vacuum properties since stainless steel allows one to use copper CF gaskets with stainless
steel parts. CF flanges can in principle reduce leak rates to less than 10−11 (mbar l s−1) [53].
This vacuum sealing technique in combination with an ion-pump with a pump speed of
the order of 10 L/s is in principle able to pump much below our specified target pressure
of 10−8 mbar.

The vacuum chamber has five CF-40-flanges. The CF flanges are sealed with copper
gaskets. Two of the flanges are needed for D-SUB-9 electrical feedthroughs for the wiring
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of the Peltier elements. The electrical feedthroughs can not be seen in Fig. 7.1, as they are
in the front of the cavity. On two of the other CF-flanges the viewports for the transmission
of the light are mounted. The viewports are mounted exactly on the height of the cavity,
such that the light coupling into the cavity enters the cavity directly through the center
of the viewport. The glass of the viewports is angled with 0.5° with respect to the surface
of the steel chamber and therefore to the surfaces of the mirrors such that no reflections
between the inside of the viewport and the cavity can cause etaloning effects, i.e. a
standing wave on the reflection signal from the cavity. The viewports are antireflection-
coated on twowavelength intervals: They are coated in a bluewavelength interval around
450 nm and in a red wavelength interval from 675 nm - 700 nm. In these two intervals
the reflection of light from the viewport is less than 0.5%. The fifth flange of the vacuum
chamber connects the back of the vacuum chamber via a 5-way-cross to the ion pump
(Agilent VaclonPlus 20 L/s), which pumps both noble gases and hydrogen and allows for
vibration free pumping. One of the other flanges on the 5-way-cross is connected to the
angle valve, where the turbo pump for the initial pumping process can be connected. The
other two flanges of the 5-way-cross are connected to a blind flange and closed with a
welding connection respectively. The lid is attached onto the steel chamber with a custom
rectangular copper gasket.

7.2.2 Temperature Control of the Optical Resonator

The thermal conductivity of stainless steel of type AISI 304 is λAISI 304 = 16.2 W/(m ·K).
This is a relatively low thermal conduction value compared to aluminum of type EN AW
5083 [λEN AW 5083 = 120W/(m·K)]. A lower thermal conduction of the vacuum chamber
makes the vacuum chamber a worse heat shield as discussed in Sec. 6.2.2. The copper
box was polished with a high-gloss polish to obtain a very low emissivity coefficient. The
inner heat shield was sent to plasotec GmbH to get it plasma polished. We assumed that
we would reach the best emissivity coefficient of the copper parts by plasma polishing.
Nevertheless, comparing the shininess of the inner heat shield and the copper box, the
copper box seemed to be more shiny.

However, with a very stable active temperature control we should still be able to control
the inner copper box to a stability of under 1 mK. The Peltier elements are ideally suited
to react to both heating and cooling processes because they can both cool and heat an
object. Peltier elements cool their cool side and the heat is dissipated on the hot side.
We used the Peltier element TE-2-(127-127)-1.15 from TE Technology Inc. for our setup,
since this Peltier element is vacuum compatible to pressures of less than 10−8 mbar [52].
The active temperature control uses the PI controller HTC1500-62 in combination with
the PCB HTCEVALPCB from Wavelength Electronics and Omega 5500 10 kΩ thermistors.
The temperature of the thermistors is measured with a 4-wire resistance measurement
with a Keithley Multichannel 2700 device.

For an optimal active temperature stabilization of the inner copper box wewant the whole
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copper box to be homogeneously heated. However, a Peltier element heats by conduction
of heat and can only heat the copper box from one side because it must be properly heat
sunk to the vacuum housing. We realized a good thermal contact between the Peltier
element and the vacuum housing by placing the Peltier element on a copper plate. This
copper plate is much bigger than the surface area of the Peltier element and ensures with
its large surface area a low thermal conductive resistance between the Peltier element
and the stainless steel chamber (see Eqn. (6.22). In between the Peltier elements and
the copper parts we placed a 0.1 mm thick indium foil. The surface of the indium foil is
smooth and ensures a good thermal contact between the copper and the Peltier element
even if the Peltier element’s surface is not perfectly plane.

Because of the only very localized conductive heating of the Peltier elements, there will
always be a temperature gradient over the copper box. To obtain an optimal temperature
stability of the copper box we placed the thermistors on the copper box very close to the
holes for the light to go through. Since these points are in the middle of the height of the
copper box, the thermistors at these points see an average temperature of the copper box.
Servoing on a setpoint close to here is supposed to minimize temperature fluctuations of
the system.

7.2.3 Vibration isolation of the Steel-Chamber Cavity

To obtain an optimal vibration isolation performance, we decided to buy the vibration
isolation platform 150 BM-8 from Minus-K Technology, which was chosen because of our
weight estimation (estimated using Autodesk Inventor) of the cavity housing and compo-
nents of ≈ 65 kg. Furthermore, the vibration isolation platform is large enough for our
steel chamber cavity and optics needed to couple into the cavity. The vibration isolation
platform has a vertical 0.5 Hz and horizontal 1.5 Hz natural frequency, respectively. Any
vertical accelerations higher than 5 Hz are damped by 40 dB. Horizontal accelerations
higher than 5 Hz are damped by 20 dB. The specifications named allow for accelerations
smaller than 10−4ms−2.

7.3 Assembly of the Stainless Steel Chamber Cavity

7.3.1 Cleaning of the Vacuum Parts

All parts were cleaned according to the vacuum cleaning reference from Ref. [54] and
Ref. [43]. However, some steps were changed. Hence we will take a look at the vacuum
cleaning of the different parts.

Stainless Steel parts The machine shop had done a leak test of the chamber before the
chamber arrived in the laboratory, where a vacuum level of 10−4 mbar was reached.
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I washed the parts with deionized water, sonicated them in a Liquinox (from Al-
conox) soap solution at 50°C and rinsed them with acetone and with isopropanol.
After washing the stainless steel parts we put them on aluminum foil in the oven
and then baked them for 24 hours at 300°C.

Copper parts The copper box was very dirty after polishing it with paraffin sand paper.
Paint thinner was used to wash off all residuals from the polishing procedure. This
took several iterations and the venting holes had to be cleaned with Q-tips. Oxi-
dized parts of the copper were treated with citric acid. After this initial cleaning
process, we sonicated the copper parts, then we rinsed the copper parts with deion-
ized water, with acetone, and then with isopropanol. We then put all copper parts
in the oven on a layer of aluminum foil, flushed the oven with argon and baked at
130°C for 12 hours to avoid oxidizing the copper.

Viton pads The Viton pads were sonicated in a Liquinox soap solution and then washed
with deionized water. Afterwards they were rinsed with isopropanol (not with ace-
tone) and baked in the oven at 150°C for 16 hours to remove the adsorbed and
absorbed water.

Electrical parts All electrical parts were washed off with deionized water and then son-
icated in isopropanol. Especially the soldered connections were washed off with
isopropanol very carefully.

Zerodur spacer The Zerodur spacer was rinsed with deionized water, acetone and iso-
propanol. We did not bake the Zerodur spacer as cooling the spacer too quickly
might have degraded its thermal properties [32].

Viewports and ion pump and angle valve Weblew nitrogen on the surfaces of the view-
ports. Apart from this we did not clean these parts.

After the baking procedure we put all parts in a vacuum bag that was flushed with ar-
gon. With this technique we tried to prevent the parts from adsorbing too much water
molecules from the air. The baking process tries to dissolve them from the surface. There-
fore leaving the baked parts in the air for some time reverses the baking process.

7.3.2 Assembly of the Inner parts of the Cavity

As a first step we soldered the Peltier elements in series with vacuum-compatible solder.
We also prepared the electrical feedthrough vacuum side wires to not have accessibility
problems when working in the steel chamber. After baking of the stainless steel chamber,
we put the stainless steel housing on the vibration isolation platform. The center of mass
position of the stainless steel chamber with everything attached was estimated using
Autodesk Inventor. A picture of the the empty chamber is shown in Fig. 7.2(a).
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(a) (b)

Fig. 7.2 (a) The empty steel chamber. (b) One of the copper sidewalls. One can see the blob of Torr
Seal covering both the thermistor and the soldering connection to the wire.

The SUB-D-feedthroughs with Kapton insulated wires already attached were first con-
nected to the chamber to be able to connect the Peltier elements directly. As a next step
we mounted the copper heat sink plate with 3 set screws. However, it turned out that
the heat sink plate was wobbling on the bottom plate of the chamber because its bot-
tom surface was not plane. Thus we flattened the surface with sandpaper and put the
heat sink back into the steel chamber (after another cleaning run). Then we placed the
serially connected Peltier elements to the Kapton insulated wires. On the top and the
bottom surface of the Peltiers we put indium foil for enhanced thermal connection. In
the next step we glued the thermistors in the holes of the copper plate with Torr Seal.
Due to the small wire size of the thermistors we ripped several of the thermistor wires in
the next steps. Hence, we decided to do a rather unconventional solution: We soldered
a 1 mm thick Kapton insulated wire on the Thermistor wire and then we put Torr Seal
both over the thermistor and over the soldering connection, as can be seen in Fig. 7.2(b).
This step should prevent any mechanical stress on the thermistors. Care was taken not to
include any virtual leaks in the Torr Seal part and to electrically insulate the wires from
the copper surface.

We then assembled the copper box. The next problem occurred when we wanted to lift
the empty copper box in the chamber. The extrusions on the heat sink and the bottom
plate of the copper plate were not deep enough to ensure that the Peltier elements were at
the right spot and the box was not wobbling. As a solution to this problem we waterjetted
a form which fits in between the vacuum chamber and the copper box and ensures that
the copper box is in the right place. This tool was placed on both sides of the chamber
and can be seen in Fig. 7.3(a).
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(a) (b)

Fig. 7.3 (a) Picture of the mounting form to correctly place the copper box. On the heatsink one can
see the Peltier elements. (b) The copper box is in the cavity. Also the inner heat shield is in
place.

Following this process, we mounted the Zerodur spacer on top of Viton pads in the copper
box. Also we put the inner heat shield into the copper box. The mounted inner shield can
be seen in Fig. 7.3(b). Afterwards we closed the copper box with a the lid and connected
the thermistors with the Kapton insulated wires. In the next step we connected the 5-
way-cross to the ion pump, with the angle valve and then with the vacuum chamber. It
is important to proceed in this order because the silver screws of the angle valve can
otherwise not be accessed. In the next step we attached the viewports onto the vacuum
chamber and then we tightened all CF-40 flanges with 18 Nm torque. We then connected
the turbo pump with a bellows to the angle valve. An overview of the vacuum chamber
with everything but the vacuum housing lid connected can be seen in Fig. 7.4.
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Fig. 7.4 On the picture one can see the vacuum housing in the front and the ion pump and the angle
valve in the back.

Since we wanted to do a first bakeout of the vacuum housing before putting the optical
resonator in, we closed the chamber with the lid. We applied a torque of 23 Nm to the M8
screws used here. We started the turbo pump and within the first 24 hours we reached a
pressure of 7 · 10−7 mbar. We then decided to bake the vacuum chamber. The maximum
baking temperature was limited to 80°C due to the Peltier elements, whose maximum
storage temperature is 80°C . Furthermore, one must be careful when heating the vibra-
tion isolation platform, since springs on the inside of the platform can be deformed. We
vacuum baked the cavity with the vibration isolation platform underneath the cavity.

Baking for four days reduced the pressure on the pressure gauge attached to the turbo
pump to 2 · 10−7 mbar. We then turned off the turbo pump, flushed the cavity with
argon, detached the turbo pump and moved the cavity from our small optical table to the
laser optical table. There we opened the lid of the vacuum housing, the copper box and
removed the lid of the upper heatshield to put in the cavity. The mounting position of the
optical resonator on the Zerodur spacer with Viton pads is symmetric and can be seen in
Fig. 7.5(a). A good overview of the position of the optical resonator within the vacuum
housing and a close up on the rectangular copper gasket of the vacuum housing lid can
be seen in Fig. 7.5(b).
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(a) (b)

Fig. 7.5 (a) Picture of the optical resonator mounted with Viton pads on the Zerodur spacer. (b) The
position of the optical resonator within the housing can be seen very well on this picture.
The custom copper gasket (already used from the bakeout) can also be seen.

After putting the optical resonator in the cavity we put all heat shields back into their
positions and closed the lid again. We then connected back the turbo pump and started
pumping again. After a night of pumping, we started the ion pump at a pressure of
10−6 mbar and after three days of pumping we reached a pressure of 7 · 10−7 mbar. We
then valved off the turbo pump and disconnected it. After two more weeks of baking we
reached a pressure of 6 · 10−8 mbar. The pressure is still falling (very slowly). However,
we could do a low temperature bakeout at 40-50°C for some weeks. Unfortunately this
bakeout did not fit into the time schedule of my master’s thesis and therefore we decided
to do first measurements without a bakeout. A bakeout would give a better pressure but
for this we would need to remove all optics on the cavity breadboard.

During the bakeout of the cavity we were already able to characterize the temperature
characteristics of our system.

7.4 Analysis of the Temperature Properties of the Steel Chamber
Cavity

In our vacuum system our copper box cools via a conductive process (connection via the
Peltier elements) but also via a radiative process to the vacuum chamber and the inner
heat shield. However, the two processes scale differently with temperature. The conduc-
tive cooling process is directly proportional to temperature changes while the radiative
cooling process scales with T 4. Hence, it is useful to approximate the radiative process
with a linear process to obtain a overall linear behavior of the heating process [55]. With
this approximation, the radiative heating process described in Sec. 6.2.2 can be expressed
as

Prad = αradA(T2 − T1), (7.1)
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where αrad is the characteristic radiative coupling of two objects and A is the area of the
object emitting heat. Combining the two heat transfer processes, we obtain [55]

mc
dT2
dt

= −αtotA(T2 − T1), (7.2)

where αtot describes the total coupling of our system. This equation holds if the heat
conduction in a system dominates the heat convection, which is a valid assumption for our
system since we can assign a single temperature to the copper box due to the good thermal
conductivity of copper [55]. The solution of the differential equation in Eqn. (7.2) is an
exponential decay. It is commonly called Newton’s law of cooling and is given by

T2(t) = T1 + (T1 − T2)e
−t/τ . (7.3)

The time constant τ gives an estimate for how much our system is decoupled from the
environment. We now want to understand which time constant our system has.

Our system consists of three different parts that can be seen in Fig. 7.6.
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Fig. 7.6 The temperature control system consists of three different parts. The green shaded part of
the system shows the actively temperature controlled components of the wood box and
of the vacuum chamber. The red shaded part of the system shows the actively tempera-
ture controlled components of the vacuum chamber. The blue shaded part of the system
represents the Zerodur holder, the inner heat shield and the optical resonator.

We start from the inside of the cavity to understand its setup. The optical resonator, the
inner shield and the Zerodur holder (in this figure these elements are abbreviated as “the
cavity”) are standing on Viton Pads, which are placed on the baseplate of the copper box.
Heat between these two components can be transferred to the copper box with resistance
Rbox−cavity radiatively or conductively via the Viton pads. Since the thermal conductivity
of Viton is relatively small and the copper boxes are polished to get a small emissivity, the
capacity Ccavity−box is small. The cavity is heat sunk to the copper box. A PI loop actively
stabilizes the temperature of the copper box. Hence, the temperature Tbox is stable. The
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copper box is heat sunk to the chamber and exchanges heat mostly via conduction to
the vacuum chamber with thermal resistance Rchamber−box. Since the thermal contact
resistance to the steel chamber is decreased by using indium foil the contact resistance
from the copper box to the steel chamber is kept as low as possible to obtain a high
thermal capacity Cbox−chamber and therefore good low pass filter characteristics. Finally,
the steel vacuum chamber mounted on the vibration isolation platform is heat-sunk to
the optical table. Additionally, we plan to build another wooden box around the cavity
to decrease the air temperature fluctuations in the box (see Sec. 6.3).

A first characterization of the vacuum housing of the steel cavity was done by measuring
the time constant of the temperature stabilization of the copper box. We heated up the
copper box with Peltier elements to 40°C while the steel chamber was not pumped on
(pressure of ≈ 10−4 mbar in the chamber) and let the system equilibrate for some time.
We then turned off the heaters and the copper box cooled down exponentially. The
temperature was measured with the thermistors glued to the copper box. We repeated
the same heating process when the cavity was evacuated to a pressure of 2× 10−7 mbar.
The cooling process under the better vacuum conditions is denoted as August in Fig. 7.7,
while the cooling process under the worse vacuum condition is denoted as September.
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Fig. 7.7 The plot shows the exponential decrease of the temperature at the Left Bottom (LB) sensor
after turning off the Peltier heaters for two time intervals in August and September. The
copper box was stabilized with the Peltier heaters to around 40°C in both cases. The red
trace (with the blue fit) was taken in August at a very high pressure in the chamber. The
purple trace (with the green fit) was taken in September at a pressure of 2 × 10−7 mbar in
the chamber.

The characteristic time constants of the exponential temperature decrease are τaug =
3.95(2) h and τsep = 5.39(2) h respectively. The error on the fit was obtained by calcu-
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lating the total error etot =
√
e2fit + e2therm of the fit for the three different thermistors

and of the thermistor values. The conduction properties of the copper box to the vacuum
chamber were the same since the copper box was not moved in position. Contrary, we
put the optical resonator into the copper box and therefore increased the weight of the
copper box which increases the conductive link in between the copper box and the steel
chamber. Hence, we attribute the longer time constant of the copper box under higher
vacuum to the absence of air molecules that can transfer heat from the copper box to
the steel chamber. However, the time constant of the vacuum chamber is long enough
to suppress fast changes of the environment. The time constant is not long enough to
suppress daily fluctuations. Therefore we need an additional heat shield that surrounds
the vacuum housing as described in Sec. 6.3 to minimize periodic temperature changes.
However, Stephan measured a characteristic time constant τ = 20.6(7) h for the first-
generation cavity [43]. The difference in the time constant of almost factor 4 between
the two cavities can be attributed to the higher conductive link of the steel cavity via
the Peltier elements. In the first-generation cavity, four Viton pads with a total area of
400 mm2 act as a conductive link between the copper box and the aluminum. For our
steel chamber the area of the conductive link is 2 × 1600 mm2. Hence the Peltier ele-
ments have an eight times increased conductive link (see Eqn.(6.22) for the definition
of the conductive resistance). The height of the Peltier elements is 8 mm and the height
of the Viton pads in the aluminum cavity is 10 mm. Hence the thickness factor in the
conductive link is comparable. However, the thermal conductivity coefficient of Viton
(λViton = 0.2−1.3 W/(m ·K) [56]) is higher than the thermal conductivity of the Peltier
element. From the measurement we assume the thermal conductivity of the Peltier ele-
ments to be four times smaller than the thermal conductivity of the Viton pads.

Looking at Fig. 7.6 another characteristic time constant is the speed with which heat is
transferred from the outside of the steel box to the inside of the steel box. We measured
this time constant during the bakeout of the steel chamber. Here, we wrapped the vac-
uum chamber of the cavity with one layer of aluminum foil, then we mounted heating
tapes homogeneously around the vacuum chamber, put a layer of fiber glass and more
aluminum around the chamber. The temperature was measured with K-type thermocou-
ples attached to the the outside of the steel chamber. To start the bakeout procedure we
ramped up the temperature of the vacuum chamber with a ramp speed of 0.5°C. This
ramp speed value was chosen to not destroy viewports during baking. A graph of the
temperature curves of the inside of the cavity and the outside of the steel chamber is
shown in Fig. 7.8.
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Fig. 7.8 Measurement of the heating and cooling time constants of the bakeout. The blue trace is
the temperature measured over time with a thermocouple on the outside of the vacuum
chamber. The red curve shows the temperature of one of the thermistors glued to the cop-
per box. The black dashed lines show the fits to the temperature curves.

The decreased end temperature of the copper box in comparison with the vacuum cham-
ber can be explained by the fact that the PI loop keeping the temperature at 85°C is
servoing a thermocouple attached to the vacuumchamber. However, when reaching a
steady state of the heating process, a lot of the heat will be flowing to the optical table
via the vibration isolation platform which decreases the end temperature on the inside
of the chamber. Even though Newton’s law for cooling processes was defined for cool-
ing processes only, we want to fit heating processes with an exponential decay ansatz
as well [57], to get an estimate for the decoupling of the vacuum chamber and the cop-
per box. The obtained exponential fits for the time constants of the heating and cooling
process are given in Tab. 7.1.

τsteel,heat τsteel,cool τcopper,heat τcopper,cool
2.1 h 3.8 h 8.25 h 11.3 h

Tab. 7.1 Fitted time constants of the bakeout process

The temperature of the outside of the steel chamber rises quickly with a time constant of
τsteel,heat = 2.1 h. One can see that the thermistor on the copper box sees the tempera-
ture change almost instantly. However, the heating process on the inside is (with a time
constant of τcopper,heat = 8.25 h) much slower than the heating process on the air side.
Hence, the heating constant of the copper box on the inside is slower by almost a factor
of 4. We can also fit an exponential decay to the cooling process of the steel chamber
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after the baking process over approximately 70 h. It has a characteristic time constant of
3.8 h. The time constant of a cooling process compared to a heating process differs by a
factor 2. This can be attributed to the additional thermal insulation of the fiber glass and
aluminum foil. A longer cooling constant is even more prominent on the cooling time of
the copper box. The characteristic cooling time is double the time as for the non insulated
case. For this comparison another factor comes into play: When only heating the copper
box, the radiative link (scaling as T 4) between the copper box and the vacuum chamber
was larger than in the vacuum bakeout procedure, where the vacuum housing was also
heated.

The low thermal link of the vacuum chamber to the copper box in combination with a
good temperature control is able to achieve sub-mK temperature stability.
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Chapter 8

Testing the Second-generation Cavity

After finishing the construction of the second-generation cavity we were able to frequency
stabilize a laser to the cavity using the Pound-Drever-Hall (PDH) frequency stabilization
scheme. The frequency stabilized laser is chosen to have a frequency close to the ¹S₀-³P₁-
transition frequency, such that we can perform an optical heterodyne mixing of the laser
stabilized to the second-generation cavity with the red MOT cooling laser stabilized to
the first-generation cavity.

In this Chapter we discuss important characteristics of the Pound-Drever-Hall frequency-
stabilization setup that determine the achievable frequency stability of a laser. Residual
amplitude modulation on the EOM-crystal shifts the PDH-scheme error signal. Further,
we measure the finesse of the optical resonator. With the locked laser in operation we
compare a laser stabilized to the the second-generation cavity to a laser stabilized to the
first-generation cavity. From this comparison we can determine an upper bound on the
frequency instability of the two lasers stabilized to the first and second-generation cav-
ity, respectively. Additionally we measure the zero-crossing temperature of the second-
generation optical resonator.

8.1 Pound-Drever-Hall Frequency Stabilization

To understand how an amplitude modulation of the error signal of the Pound-Drever-Hall
technique can come about, we first need to understand the principle of the Pound-Drever-
Hall frequency-stabilization of a laser. Figure 8.1 gives an overview over the components
of the PDH frequency-stabilization technique.
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Fig. 8.1 Schematic of the Pound-Drever-Hall frequency stabilization setup. The laser to be locked is
shaded in green. The light from the laser is phase modulated and then coupled into an op-
tical resonator (purple). If not on resonance the light reflected from the cavity is converted
to an electric signal in the photodetector. Then a phase detector detects the error signal for
the frequency deviation. The blue shaded region acts as a phase detector. The obtained er-
ror signal is then fed to the loop filter (shaded red) and from there to the current modulation
port of the laser.

The laser sends out light with frequency ω and an electric field which we can describe
as Einc = E0e

iωt. In an electro-optic-modulator (EOM) light is phase modulated with
modulation frequency Ω. The resulting electric field is given by

EEOM(ω) = E0[J0(β)e
iωt + J1(β)e

i(ω+Ω)t − J1(β)e
i(ω−Ω)t], (8.1)

where the terms oscillating with ω ± Ω are called sidebands and where Ji(β) are Bessel
functions. Phase modulation processes are described in Sec. 2.2. The light is then trans-
mitted through a polarizing beam splitter and coupled into the cavity. As described in
Sec. 6.1, the cavity will only transmit light if the laser is on resonance with the cavity
resonance. The cavity will therefore have the transfer function

Fcavity(ω) =
Eref

Einc
=
r(exp(i ω

ωFSR
)− 1)

1− r2 exp(i ω
ωFSR

)
, (8.2)

for light that is reflected from the cavity. The free spectral range ωFSR describes the
angular frequency corresponding to the distance between two modes in the cavity. After
passing the λ/4 plate twice the light reflected from the cavity is reflected from the PBS
and focused onto a photodetector. The photodetector measures the intensity of the light
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which is proportional to the square of the electric field. The AC-coupled signal produced
by the photodetector can be expressed as [58]

PPD(ω) = [EEOMFcavity(ω)]
2

= J0(β)J1(β){Re [F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)] cos (Ωt)

+ Im [F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)] sin (Ωt) + 2Ω terms},
(8.3)

where F ∗(ω) is the complex conjugate of F (ω). The photodetector signal is AC-coupled,
hence DC-terms vanish. The terms oscillating with frequency Ω correspond to the side-
bands from the phase modulation. Higher order oscillations are low-pass filtered in the
PDH frequency stabilization scheme.

If themodulation frequencyΩ is sufficiently fast (Ω ≫ ωcavity whereωcavity is the linewidth
of the cavity; (here F = 270000, ωcavity ≈ 2π×5 kHz) the phase modulated sidebands on
the light are totally reflected and the photodetector signal can be demodulated with the
modulation frequency Ω. Low-pass filtering this signal to remove the terms oscillating
with frequency 2Ω gives the error signal [58]

ϵPDH = −2J0(β)J1(β) Im [F (ω)F ∗(ω +Ω) + F ∗(ω)F (ω − Ω)]. (8.4)

Close to the resonance of the cavity the error signal has a linear dependence on the fre-
quency. The error signal vanishes if the laser is on resonance with the cavity’s resonance.
An illustration of this error signal can be found in Ref. [43]. Analogous to the phase
locked loop example from Cha. 3 this error signal can be fed into a loop filter which then
modulates the laser to frequency stabilize the laser to the cavity resonance.

8.2 Residual Amplitude Modulation (RAM)

In the PDH frequency-stabilization scheme we use phase modulators to modulate side-
bands on the light An electro-optic phase modulator consists of a crystal where a modu-
lated electric field Ez is applied along the z-axis. Most of the times the crystal is a lithium
niobate crystal with birefringent properties, i.e. the crystal axes have different refractive
indices. We can apply an electric field on this crystal in z-direction to change the refrac-
tive index of the material. The refractive index of LiNbO3-crystals in z-direction can be
described by [59]

∆nz(t) = −1

2
n3zrzzEz(t), (8.5)

where nz is the refractive index for light polarized on the z-axis and rzz is the electro op-
tic coefficient, describing the coupling of the electric field to the change of the refractive
index. Light which passes through the crystal sees a periodically modulated refractive in-
dex in z-direction. Hence, the propagation speed of the light through the crystal changes
periodically and the phase of the light after the crystal is also modulated.
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A real electro-optic modulator does not modulate the phase of the light perfectly. There
are two main causes for an additional amplitude modulation of the electric field. First,
multiple reflections on the surfaces of the EOM crystal generate etaloning effects inside
the EOM. Hence the reflected electric field interferes and creates a standing wave which
as a result modulates the amplitude [60]. The second main reason for amplitude mod-
ulation in the EOM is caused by a mismatch of the polarization plane of the EOM and
the linearly polarized light field. If the polarization of the input beam is not aligned onto
the electrically modulated axis of the EOM, the different components experience differ-
ent phase shifts due to natural birefringence properties of the EOM crystal [61]. The
further light is misaligned from the z-axis, the more it also sees a phase shift of the x-
and y-axis of the EOM. The natural birefringence of the x- and y-axis is temperature de-
pendent. Hence, an off-axis polarization of the EOM causes a temperature dependence
of the phase shift of the light in x- and y-direction. This phase shift is converted to a
amplitude modulation when passing a polarizing beam splitter as e.g. in the PDH-setup
(see Fig. 8.1).

In the following we want to express the birefringence properties of light which passes the
EOM, which is modulated with modulation frequency ω, and is focused on a photodiode.
The current of the photodiode in the PDH-setup (see Fig.8.1 has components of residual
amplitude modulation. They can be modeled as [59, 61]

I(Ω, t) = −E0 sin(2β) sin(2γ) sin (Ωt) sin [∆ϕ(t) + ∆ϕcomp(t)], (8.6)

where sin(2β) sin(2γ) are polarization alignment factors, ∆ϕ is the phase shift due to the
temperature dependence of the birefringence of the EOM crystal and ∆ϕcomp is an ac-
tively controlled phase shift compensating for the birefringence of the EOM. The natural
birefringence properties of the EOM crystal can be compensated by changing the temper-
ature of the EOM crystal and changing the offset DC-electric field [62] on the modulation
voltage. Note that for a fully compensated phase shift, I(Ω) vanishes.

In the PDH-setup described in Sec. 8.1 the current from residual amplitude modulation
will add onto the current from the PDH error signal in Eqn. (8.3). Both summands oscil-
late at frequencyΩ. Hence, after demodulating the voltage from the photododetector and
low pass filtering it, the error signal of the Pound-Drever-Hall locking technique contains
a time varying offset from zero proportional to

ϵRAM = −E0 sin(2β) sin(2γ) sin [∆ϕ(t) + ∆ϕcomp(t)], (8.7)

determined by the natural birefringence properties. This offset shifts the zero crossing of
the error signal. The PI-controller controls the laser’s frequency such that the error signal
is zero. Hence, an offset fluctuation of the error signal will lead to frequency fluctuations.
The characteristic timescale of the offset fluctuations is the timescale of the temperature
fluctuations changing the birefringence of the EOM crystal. To obtain a non-drifting
frequency-stabilization, we hence need to control the RAM signal.
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The residual amplitudemodulation of the light field after passing the EOM and after being
reflected is equal in magnitude since off resonant reflection from the optical resonator
changes the electric field value by the factor −1 (see Eqn. (8.2)).

The authors of Ref. [61] suggest an active residual amplitude cancellation scheme. They
were able tomeasure the residual amplitudemodulation on their EOM crystal and actively
cancel the effect of RAM by changing the temperature and an additional offset voltage
to the modulation signal of their EOM.

Similarly, we want to check whether we can detect residual amplitude modulation. We
measured the effect of temperature drifts on the residual amplitude modulation of an
EOM crystal to estimate howmuch the error signal offset of the Pound-Drever-Hall scheme
changes over time. We changed the temperature of the EOM casing periodically and
measured the residual amplitude modulation signal proportional to the current from
Eqn. (8.6).

For our Pound-Drever-Hall setup we compared the residual amplitude properties of two
different kinds of EOMs: a bulk EOM with a crystal from Casix and an LC circuit resonant
at 20.41 MHz and a fiber EOM model PM705 (Jenoptik). The test setup for the RAM
measurement of the fiber EOM and the bulk EOM look differently and are shown in
Fig. 8.2.
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Fig. 8.2 Test setup for the detection of residual amplitude modulation caused by phase modula-
tion in an EOM. (a) Test setup for the measurement of RAM caused by a bulk EOM. Light
is polarization cleaned with a λ/2-plate, a PBS and a Glan-Taylor polarizator (GT) and then
guided onto the EOM. The casing of the EOM is temperature modulated with a Peltier ele-
ment (TEC). After the EOM the phase fluctuations of the electric field are converted to am-
plitude fluctuations by a λ/2-plate followed by a polarizing beam splitter (PBS). The light
is focused on a fast photodetector. The photodetector signal is demodulated with an I-Q
demodulator and then monitored on a oscilloscope. (b) Test setup for the measurement of
RAM caused by a fiber EOM. Differences between the bulk EOM setup and the fiber EOM
setup are shaded red and blue. Light from the laser is coupled into the fiber EOM, the out
coupled light is polarization cleaned in the PBS. The detection method is the same as in the
bulk EOM setup.

For a bulk EOM we need a polarizer in front of the EOM to align the electric field incident
on the EOM to the polarization axis of the EOM. We tested the bulk EOM with the setup
shown in Fig. 8.2(a).

The EOM crystal’s temperature was periodically modulated on a time interval of 20 s. The
RAM-current signal from Eqn. (8.6) was demodulated with the modulation frequency of
the EOM on an I-Q demodulator. An I-Q demodulator allows to measure both the in-
phase and the quadrature part of the demodulated RAM-signal which is in particular
useful for determining changes of the amplitude of the RAM-signal. The demodulated
signal from a double balanced mixer is a DC complex electric field. Using the phasor
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picture (see Cha. 2), the DC-electric field has both a real and an imaginary part. With
the oscilloscope we can only measure the real part of the electric field. If we by accident
choose the phase delay of the coax-cable in an unfortunate way, a signal demodulated
with a double balanced mixer might not contain any real part of the electric field. The
I-Q demodulator measures both the demodulated RAM signal and the 90° phased shifted
demodulated RAM signal. By simultaneously measuring the I and the Q port we can ob-
tain the full RAM-signal. The magnitude of the RAM-signal, defined asM =

√
Q2 + I2,

is compared to the temperature modulation on plot of the overlapping Allan deviation
of the magnitude of the RAM-signal for different angles of the Glan-Taylor polarizator in
Fig. 8.3.
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Fig. 8.3 The overlapping Allan deviation of the magnitude of the residual amplitude modulation on
a bulk EOM. The overlapping Allan Deviation of the magnitude of the RAM signal is plotted
against the averaging time. Shown on the left y-axis is the scaling of the temperature mod-
ulation signal (axis and trace in red). The right y-axis gives the scaling of the RAM-signals
for different Glan-Taylor polarizator (GT) angles (black y-axis). The temperature was modu-
lated with a period of 20 s. The magnitude of the dips of the Allan variance is dependent on
the angle of the Glan-Taylor polarizator, indicating the EOM polarization axis. The z-axis of
the EOM is approximately aligned with a Glan-Taylor polarization angle of 0° .

The RAM signal depends on the misalignment of the laser with respect to the polarization
axis of the EOM crystal. We measured the temperature dependence of the RAM signal
for different polarization mismatches between the light and the crystal modulation axis.
The misalignment is given as the angle of the Glan-Taylor polarizator. Hence we expect
the temperature of the EOM to change periodically over time when we periodically drive
the temperature of the EOMwith a TEC. This behavior can be well understood by looking
at the overlapping Allan deviation of the RAM oscillations. A periodic signal will aver-
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age over its oscillation period. Hence, the temperature modulation trace in Fig. 8.3 has
periodic dips over multiples of its oscillation period. The RAM-signal shows similar dips
at the oscillation period of the temperature driving. Therefore, we can infer a correla-
tion between the temperature driving of the EOM and the RAM signal. The temperature
dependence of the RAM signal is maximal for a misalignment of the polarization of the
light between 40° and 60° and almost fully vanishes for light polarizations matching the
polarization of the EOM crystal.

With a fiber EOM one can circumvent a misalignment of the polarization of the light
with the crystal modulation axis. The light is coupled into a polarization maintaining
fiber (PM-fiber), which is glued onto the the EOM-case aligned to the EOM polarization
axis. The EOM PM705 has polarizing characteristics, hence the polarization of the light
incident on the EOM is not dependent on the input polarization. We tested the temper-
ature dependence of the RAM-signal of the fiber EOM with a similar test setup as for the
bulk EOM. The test setup is shown in Fig. 8.2(b). The light from the laser is polarization
cleaned, coupled into the fiber EOM, phase modulated and then coupled out of the fiber.
The rest of the setup is analogous to the bulk EOM test setup.

The overlapping Allan deviation of the RAM signal of the fiber EOM when temperature
modulating the EOM crystal is shown in Fig. 8.4.
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Fig. 8.4 The overlapping Allan deviation of the magnitude of the residual amplitude modulation on
a fiber EOM. The overlapping Allan Deviation OADEV of the magnitude of the RAM signal
is plotted against the averaging time. The left y-axis gives a the scaling of the temperature
modulation signal (axis and trace in red). The right y-axis gives the scaling of the RAM-
signal (black axis). The temperature was modulated with a period of 2s. We can not see a
clear dip on the RAM signal which can be correlated to the modulation signal.
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As can be seen in Fig. 8.2 the RAM signal of the fiber EOMwhen temperature modulating
the TEC-element does not show a significant temperature dependence similarly to the
bulk EOM measurement for Glan-Taylor angles close to 0°.

We were not able to see a change of the demodulated signal of the electric field on the
oscilloscope by manually changing the temperature of the fiber EOM. We conclude that
an active control of the temperature of the fiber EOM does not make sense when using
our detection method. Hence, the best way to suppress residual amplitude modulation is
a stabilization of the temperature of the fiber EOM with a temperature controller.

8.3 Finesse Measurement of the Cavity

To measure the finesse of the cavity we set up the optics for a Pound-Drever-Hall fre-
quency stabilization to the second-generation cavity. The schematic of the optics setup
was built similarly to the setup of the first-generation cavity [43]. We locked a home-
built external cavity diode laser at a wavelength of 689.4 nm to the cavity. The laser
was built by a previous bachelor student and is denoted as “homebuilt linear laser” in
the following. The setup and the characterization of the laser are described in Ref. [63,
64]. The coating of the optical resonator was chosen to have a finesse of approximately
F = 280000 for both the clock transition of strontium and the red MOT transition at a
wavelength of 698 nm and 689 nm, respectively.

After having locked the laser to the cavity we were able to measure the finesse of the
cavity. To do so, we shuttered off the light going to the cavity setup with a double-pass
AOM. Then we measured the exponential decay of the light intensity stored in the cavity
as described in Sec. 6.1. We made sure that the fall-time of the AOM (Gooch & Housego
3350-199 with a specified fall-time of 9 ns at a beam diameter of 50 µm) is much shorter
than the expected ringdown time constant of the optical resonator (approximately 30 µs).
We measured the decaying transmission light intensity of the optical resonator and fitted
the solution of the differential equation (given in Eqn. (6.8)) to the measured voltage
from the photodetector. We then extracted the ringdown time from the fit. Averaging
over 20 datasets we obtain a time constant of τ = 29.03(3) µs. A fit of the ringdown data
is shown in Fig. 8.5.
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Fig. 8.5 Measurement of the characteristic time constant of the ringdown of the cavity. The red
trace shows the transmitted light intensity through the cavity on a photodetector. The blue
trace is a fit to the exponential decay of the light intensity and gives us a characteristic ring-
down time constant of τ = 29.03(3) µs.

The time constant τ can be converted to the finesse of the optical resonator using Eqn. (6.9).
Hence we could determine the finesse of the optical resonator for light at a wavelength
of 689.4 nm to be F = 2.742(2) × 105. This value for the finesse roughly matches with
the finesse F = 281000 measured for the first-generation cavity [43]. In future, the the
finesse of the optical resonator at the clock laser wavelength of 698 nm should also be
tested since the cavity will eventually be used to frequency-stabilize the clock laser.

8.4 Optical Heterodyne Mixing of Two Narrow Lasers

With the first-generation and the second-generation cavities in our lab we are now able
to compare the line shapes of two different lasers frequency stabilized to their respec-
tive high finesse cavities. This measurement gives us an upper limit on the frequency
uncertainty of both lasers as explained in Sec. 5.1.

For our measurement we beat two lasers with a wavelength of approximately 689.4 nm.
The first laser is a Toptica DL pro laser in a Littrow configuration typically used for cooling
on the red MOT transition. The second laser is the homebuilt linear laser. The red MOT
laser is frequency stabilized to the first-generation cavity and the homebuilt linear laser
is frequency stabilized to the second-generation cavity. Both lasers are set up with the
same laser driving electronics set Toptica SYS DC 110 and the PI-controller Toptica FALC
110. We did an optical heterodyne beat measurement of the two stabilized lasers. A
schematic of the heterodyne mixing setup can be found in Fig. 8.6.
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Fig. 8.6 Heterodyne mixing setup to compare the line shape of two lasers. Light from two lasers is
outcoupled. Both beams are polarization cleaned with a λ/2-plate and a polarizing beam
splitter (PBS). Then they are overlapped on a non-polarizing beam splitter (NPBS) and
aligned onto a high bandwidth photodetector. A spectrum analyzer is connected to the
photodetector to monitor the heterodyne mixing power spectral density.

We couple light from the two lasers into a fiber. We then outcouple light from the two
fibers on the heterodyne mixing setup. Here we polarization clean both beams with a
λ/2-plate and a polarizing beam splitter. We then combine the two beams on a non-
polarizing beam splitter and focus both beams onto a high bandwidth photodetector
(Newport 818-BB-45). After aligning the combined beam on the photodetector we can
see a heterodyne beat signal of the two beams, which is shown in Fig. 8.7.
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Fig. 8.7 Heterodyne mixing signal of the Toptica laser and the homebuilt linear laser. The power
spectral density of the heterodyne mixing spectrum is plotted against the Fourier frequency
with a frequency offset of 2296.5 MHz. By averaging over 20 power spectral densities of
the beat signal we obtain a full width half maximum FWHM = 1.7(8) × 102 Hz of the
laser. The inset shows the FWHM for each measured power spectral density. The resolution
bandwidth of the spectrum analyzer RBW = 30 Hz limits the resolution of this this plot.

The beat signal of the two lasers has a full width half maximum of FWHM = 1.7(8) ×
102Hz. However, the measured FWHM of the two lasers has a high standard deviation.
The sweep of the spectrum analyzer can not always follow the sweep of the spectrum
analyzer, since the laser jitters too fast for the spectrum analyzer to follow. The data was
taken with a resolution bandwidth of 30 Hz over an averaging time of 1 s.

The measured FWHM of the beat signal gives us an upper bound on the linewidth of the
two lasers. We expect the measured FWHM not to be the final limit for the FWHM of the
two lasers. Using the Toptica FALC, a high bandwidth PI controller for laser frequency
stabilization, and a high finesse cavity we should be able to obtain a laser with aFWHM ≈
1 Hz [65]. Possible reasons for the increased full linewidth of the two lasers are:

Open laser lid of the homebuilt linear laser The laser lid of the homebuilt linear laser
is not yet closed since our current design does not have an electrical feedthrough
for the current modulation signal of the laser from the PI-controller. This means
that environmental influences can couple into the laser.

Coupling efficiency of the lasers to the cavity The coupling efficiency of transmitted
light through the cavity compared to coupled light into the cavity is 10 % for the
first-generation cavity and 5 % for the second-generation cavity. The coupling to
the second-generation cavity can still be improved. A higher transmission signal
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corresponds to a better mode matching of the cavityTEM00 mode and the Gaussian
beam coupled into the cavity. A better mode matching of the Gaussian beam to
the cavity mode gives a better signal-to-noise ratio of the Pound-Drever-Hall error
signal.

Fluctuating transmission on the Toptica laser lock The transmission signal of the Top-
tica laser coupled to the first-generation cavity is fluctuating non-periodically. We
attribute this fluctuation to a possible optical feedback problem of the laser.

No fiber noise cancellation We did not actively cancel the phase noise from the optical
fibers transferring light from the two lasers to the optical heterodyne mixing setup.
When guiding light through a fiber the line shape of the laser can broaden to full
width half maxima on the order of 1 kHz [36].

We could not yet attribute the fluctuation of the transmission signal through the first-
generation cavity to a specific noise source.

The beat frequency of the two lasers is stable enough to characterize the thermal time
constant of the optical resonator and to measure the zero crossing temperature of the
optical resonator. Further optimization of both laser frequency-stabilization systems is
still required.

8.5 Determining the Zero Crossing Temperature of the Optical
Resonator

As described in Sec. 6.2, the relation between temperature changes of the optical res-
onator, changes of the cavity spacer length and hence changes of the resonance frequency
of the optical resonator were discussed. With the heterodyne mixing signal between
two lasers stabilized to two different cavities we can measure changes of the beat fre-
quency. Neglecting the pressure fluctuations which are on the 100 Hz scale (as discussed
in Sec. 6.4) and assuming that the cavity is vibrationally isolated to the environment,
the change in beat frequency is connected to the temperature change of the optical res-
onator. By changing the temperature of the copper box in the second-generation cavity,
we can observe how quickly the beat frequency of the Toptica laser and the homebuilt
linear laser changes. However, we need to account for the resonance frequency drifts
of the first-generation cavity, which we determined to be approximately 150 kHz. This
frequency drift will be the major error component in the following calculations.

8.5.1 Resonance Frequency Drift caused by a Change of Temperature

For the measurement of the frequency drift of the cavity caused by a change in temper-
ature we heated up the copper box in the second-generation cavity to a temperature of
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26.3°C and let the system equilibrate for three days at this temperature. We measured
the beat frequency before the first temperature change to be 2291.531 MHz. We then in-
creased the set point of the PI control of the temperature of the copper box to 27.5°C. The
copper box heated up within 45 min to the set temperature. This temperature increase
happened very quickly compared to the expected temperature time constant of the opti-
cal resonator. Hence, the heating of the copper box can be seen as a step temperature
response for the optical resonator. After reaching the set temperature the PI-controller
keeps the temperature of the copper box at a constant value so we can assume that the
copper box’s temperature is homogeneously distributed and radiates heat homogeneously
onto the optical resonator.

After heating up the copper boxwemeasured how the beat frequency between the Toptica
and the homebuilt linear laser changes in time due to the temperature change in the
second-generation cavity. The beat frequency is proportional to the temperature change,
which can be approximated by Newton’s law of cooling as given in Eqn. (7.3) for the
beat-frequencies

f(t) = (finitial − fend) exp (−
t

τ
) + fend, (8.8)

where finitial is the start frequency at the beginning of the temperature change seen by
the cavity, fend is the fitted final frequency resulting from the temperature change after
waiting for an infinite amount of time and τ is the time constant of the beat signal drift.
The measurement of the beat frequency for a temperature step from 26.3°C to 27.5°C is
shown in Fig. 8.8.
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Fig. 8.8 The change of the beat frequency between the Toptica laser and the homebuilt linear laser
after a temperature change of the copper box from 26.3°C to 27.5°C is plotted against time
(blue points). We obtain a fitted final frequency ffinal = 2294.783(6) MHz and a time con-
stant of the exponential decay of τ = 13.0(2) h (red trace).
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Fitting Eqn. 8.8 to the beat frequencies gives a time constant of the resistive coupling
between the copper box and the optical resonator. It is given as 13.0(2) h. Further we
can get a final frequency ffinal = 2294.783(6) MHz from the fit, which gives us the beat
frequency value, which corresponds to the response of a temperature change to the beat
frequency after waiting an infinite amount of time.

8.5.2 The Zero Crossing Temperature of the Optical Resonator

With the fitted final frequencies finitial from the temperature changes of the cavity we
can now determine the zero crossing temperature of the optical resonator. Our optical
resonator from Stable Laser Systems was specified by the manufacturer to have a zero
crossing temperature of 32.75°C ± 1°C. We measured drifts of the frequency within the
range of 26°C and 36°C. For each temperature change we measured the frequency drift
over time and fitted an exponential in the same way as shown in Fig. 8.8.

Using the final frequency value ffinal as the resonance frequency drift of the optical res-
onator caused by a temperature change ∆T , we could determine the zero crossing tem-
perature of the optical resonator. In Fig. 8.9 the plot and the fit of the frequency drift of
the heterodyne mixing measurement caused by a temperature change is shown.
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Fig. 8.9 Beat frequency of the heterodyne beat of the Toptica laser and the homebuilt linear laser
plotted against temperature of the spacer (blue points). The datapoints are given with error-
bars obtained from the frequency drift fits. From a parabola fit to the frequency values we
obtain a zero crossing temperature (ZCT) of 32.16(2)°C.

We were able to determine the zero crossing temperature T = 32.16(2)°C by fitting the
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parabola [44]

fbeat(T ) =
a

2
(T − T0)

2 +
b

3
(T − T0)

3 + off, (8.9)

where T0 is the zero crossing temperature, off is a constant offset on the beat frequencies
and a and b are the thermal expansion factors explained in Sec. 6.2.2, to the fitted final
frequencies ffinal after a temperature change. The model ignores linear drifts of the beat
frequency, they are determined for our old cavity to be on the scale of 30 mHz/s. At
the zero crossing temperature any temperature fluctuations of the environment will have
minimal impact on the change of the resonance frequency.

8.6 Thermal Coupling of the Optical Resonator to the Copper Box

To fully characterize the temperature behavior of the second-generation cavity system,
we can now also characterize the time constant of the coupling of the optical resonator
to the copper box. With the data taken for the zero crossing temperature of the optical
resonator we can extract the time constants τ of the fits. They are shown in Fig. 8.10.
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Fig. 8.10 Plot of the characteristic time constants of the frequency drifts induced by a temperature
change plotted against the end temperature of each heating process.

We see a temperature dependence of the time constant of the optical resonator. The
time constant of the temperature is lower for temperatures which are closer to the zero
crossing temperature of the optical spacer and increase for temperatures further away
from the zero crossing temperature.



Chapter 8 Testing the Second-generation Cavity 106

We attribute this phenomenon to a higher heat capacity of the optical resonator. The
heat capacity can be shown to be a linear function of the coefficient of thermal expansion
αCTE [66], thus we expect a minimum of the timeconstants where αCTE is minimal.

However, this conclusion is not final. We have to take more (continuous) data of the
beat frequency to exclude that temperature fluctuations of the first generation cavity
caused a decrease of the timeconstant around the zero crossing temperature. Since the
frequency changes caused by a temperature change are minimal around the zero crossing
temperature, the effect of a drift of the first generation cavity is maximal around the zero
crossing temperature.

With a thermal coupling constant of the inner cavity we can fully describe the thermal
couplings of the second-generation cavity as given in Fig. 7.6. Close to the zero-expansion
coefficient the time constant of the heating process is approximately 8 h.
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Chapter 9

Conclusion and Outlook

In this thesis, I reported on the design of a clock laser system for strontium. As a first
step, we designed a low-noise and high-bandwidth photodetector for laser stabilization.
I summarized the working principle of our photodetector. Although the parasitic capaci-
tance on the photodetector’s printed circuit board still limits its bandwidth, we were able
to push the parasitic capacitance down to be on the order of the parasitic capacitance
of the transimpedance amplifier used in the photodetector. Furthermore, I compared
the gain/bandwidth characteristics of our gain-adaptable photodetector and compared
the noise characteristics of the fast photodetector board to be on the same level as the
Thorlabs PD10A2 for frequencies up to 100 MHz. In conclusion, our photodetector has
comparable performance as commercial photodetectors, but can be optimized for many
different use-cases in our lab.

Once the full clock laser frequency stabilization setup is complete, we want to transfer
narrow-linewidth light from the clock laser to the main experiment through fibers. To
not broaden the spectrum of the laser, we employ an active noise cancellation scheme
of the acoustic, temperature, and pressure noise that is incident on the fiber. I reported
on the design of a fiber-noise-cancellation phase-locked loop with a bandwidth of 20 kHz
and a maximal noise suppression of 20 dB.

When running the main experiment and looking at the atom number after the red MOT
cooling stage we saw fluctuations of the resonance frequency of the first generation refer-
ence cavity in our laboratory on the order of 150 kHz. I analyzed the resonance frequency
fluctuations of the first generation cavity and can attribute them to temperature fluctua-
tions inside the vacuum chamber.

As not only the resonance frequency of the first generation cavity was fluctuating but also
vacuum problems with this cavity appeared, we decided to build a new reference cavity
for both the red MOT transition and the clock transition. I reported on the design and
construction of a second-generation cavity. The design of this second-generation cavity is
modified from the design of the first generation cavity. To circumvent vacuum problems
we decided to build the vacuum housing from stainless steel and to prevent outgassing
from resistive heaters we decided to temperature-stabilize the cavity with TEC-elements.
We reached a pressure of 6 · 10−8 mbar. This pressure can still be improved by a low
temperature vacuum bakeout. The characteristic coupling constant of the copper box
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inside the vacuum housing for heating processes is 8.2 h. Hence, the vacuum housing
can damp fast temperature fluctuations of the environment.

Further, I reported on the analysis of shifts of the error signal of the Pound-Drever-Hall
frequency stabilization scheme caused by residual amplitude modulation (RAM) of light
passing the electro-optic modulator (EOM) crystal. I determined a temperature depen-
dence of the RAM signal for a misalignment of the modulation axis of the crystal in a
bulk EOM, but could not see a temperature dependence of the RAM signal in a fiber
EOM, where a correct alignment of the fiber axis is ensured by gluing the fiber onto the
EOM casing. With two lasers stabilized to the first- and second-generation cavities, we
were able to obtain an optical heterodyne beat signal giving us an upper limit of the in-
stantaneous linewidth of the two lasers of 1.7(8)×102 Hz at an averaging time of 1 s and
a resolution bandwidth of 30 Hz. I reported on determining the zero crossing tempera-
ture of the second-generation optical resonator to be 32.16(2)°C. Finally I determined the
resistive coupling of the second-generation optical resonator to have a time constant of
8 h close to the zero crossing temperature. The time constants of the fitted resonance fre-
quency drifts of the optical resonator are minimal close to the zero crossing temperature
and are higher for temperature changes further away from the zero crossing temperature.
I attribute this to a change in heat capacity close to the zero crossing temperature which
is caused by a change of the coefficient of zero expansion of the optical resonator.

With the first and the second-generation cavity in our laboratory we have a platform to
test the performance of the fiber noise cancellation and test the effect of residual ampli-
tude modulation on the error signal of one of the lasers locked to the two cavities. With
the addition of a frequency comb to our laboratory we are now able to thoroughly analyze
the the changing time constant of the heating process of the second generation optical
resonator.

The fiber noise cancellation project is not yet finished. The printed circuit boards will
have to be redesigned since the first iteration boards had bugs like oscillating amplifiers
that we could not solve on the board (but by external modifications). Additionally, we
want to separate the two voltage controlled oscillators on the board with RF-shielding
and by placing the oscillators on two separate PCBs. Suggestions for changes of the fiber
noise cancellation design are given in Sec. 5.6. The fiber noise cancellation phase locked
loop can be adapted to other applications where incoherent noise on e.g. two different
fibers must be in common mode.

In conclusion, within this master’s thesis project I designed a narrow linewidth laser sys-
tem for ultracold strontium with low noise electronics and a careful system design. I
made many improvements to the existing system but there is still more optimization to
do to address the clock transition of strontium atoms with a laser with an instantaneous
linewidth on the order of 1 Hz.
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