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Zusammenfassung

Eine Vielzahl der modernen Quantentechnologien basieren auf derWechselwirkung zwis-
chen Licht und Atomen. Durch die Kombination grundlegenderWerkzeuge wie Laserküh-
lung und optische Dipolfallen haben diese Technologien den Punkt erreicht, an dem
einzelne Atome gefangen werden und in hoch kontrollierter Weise miteinander wech-
selwirken können. Ein wichtiges Beispiel ist das optische Gitter, in dem sich durch In-
terferenz von Laserstrahlen ein Potential bildet, das viele Atome in einer regelmäßigen
Anordnung einfängt. Die gefangenen Atome können gleichzeitig angesprochen werden,
was in Quantenmetrologie zur Anwendung kommt. Dabei werden optische Gitter für die
Realisierung der präzisesten Atomuhren verwendet. In der analogen Quantensimulation
ahmen Atome in optischen Gittern Elektronen in kondensierter Materie nach. Inspiri-
ert durch den Erfolg dieser Anwendungen wurden viele Vorschläge für weitere Verwen-
dungen optischer Gitter gemacht. Beispiele sind die Quantensimulation verschiedener
physikalischer Systeme in Nanophotonik oder Quantenchemie und für skalierbare Quan-
tencomputer. Um diese spannenden Vorschläge zu realisieren, sind jedoch eine Reihe
neuer Werkzeuge und technischer Fortschritte notwendig.

Diese Arbeit beschreibt den Aufbau eines analogen Quantensimulators basierend auf
ultrakalten Strontium (Sr) Atomen, die in optischen Gittern gefangen sind. Diese Erdal-
kaliatome haben einzigartige Vorteile für die Quantensimulation. Der erste Vorteil von Sr
ist seine heliumähnliche Struktur der Elektronenmit vielfältigen elektronischen Übergän-
gen, die sowohl breit als auch schmal sein können. Wir demonstrieren ein verbessertes
Schema zur Laserkühlung basierend auf diesen beiden Arten von Übergängen. Mit un-
serem Schema erzeugen wir magnetooptische Fallen für bosonische und fermionische
Isotope von Sr mit hohen Phasenraumdichten. Unsere Methode ist einfach zu imple-
mentieren und schneller sowie auch robuster als herkömmliche Kühlmethoden, was zu
kürzeren Präparationszeiten führt. Der zweite Vorteil von Sr ist die Existenz eines doppelt
verbotenen Uhrenübergangs zwischen dem Singulett-Grundzustand und einem metasta-
bilen Triplettzustand, den sogenannten Uhrenzuständen. ImGegensatz zuHyperfeinzustän-
den, die in Atomuhren auf Basis von Alkaliatomen verwendet werden, können diese
Uhrenzustände selektiv bei sogenannten Tune-Out-Wellenlängen gefangen werden, bei
denen die beiden Zustände stark unabhängige optische Potentiale erfahren. Mit einer
neuartigenMethode bestimmenwir präzise die Tune-Out-Wellenlänge für den Sr-Grundzustand
und zeigen eine Unterdrückung des Grundzustandsgitterpotentials um fast vier Größenord-
nungen gegenüber dem Potential des angeregten Zustands. Wir verwenden dieses zus-
tandsabhängige Gitter auch, um die Lebensdauer angeregter Zustände genau zu messen
und große Diskrepanzen in den Atomdaten aufzudecken, die verwendet werden, um den
größten systematischen Effekt optischer Sr-Gitteruhren zu kalibrieren.

Neben der Nutzung der einzigartigen Eigenschaften von Strontium demonstrieren wir
auch eine neue Architektur basierend auf optischen Resonatoren zur Vergrößerung zwei-
dimensionaler optischer Gitter. Bei herkömmlichen Aufbauten mit Freistrahloptik ist die
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Anzahl der Plätze in einem optischen Gitter durch die verfügbare Laserleistung begrenzt.
Die endliche radiale Ausdehnung des Strahls führt zu einer Variation der Gittertiefe weg
von der Strahlmitte. Um diese Einschränkung zu überwinden, haben wir eine neuartige
Architektur entwickelt, bei der die Laserleistung in zwei orthogonalen Gitterrichtungen
durch die Verwendung optischer Resonatoren verstärkt wird. Diese Verstärkung führt
zu einer um eine Größenordnung größeren Anzahl von nutzbaren Gitterplätzen im Ver-
gleich zu Freistrahlgittern. Entscheidend ist, dass diese Verstärkung bei jeder gewün-
schten Wellenlänge erfolgen kann, einschließlich der Sr Tune-Out-Wellenlänge, bei der
die Laserleistung besonders begrenzt ist. Wir charakterisieren das durch den Resonator
verstärkte Gitter mit hochauflösender Uhrenspektroskopie, um die Einhüllende des Git-
terpotentials sowie die Probentemperatur lokal zumessen. Auf dieseWeise sind wir in der
Lage, die Gittertiefe und -homogenität zu charakterisieren, aber auch Grundband- und
Gitterlebensdauern zu messen und zu zeigen, dass sie mit den Lebensdauern in Freis-
trahlgittern vergleichbar sind.

Insgesamt ist das in dieser Dissertation beschriebene Experiment eines der ersten Ex-
perimente weltweit, das darauf abzielt, die besonderen Eigenschaften von Sr für optische
gitterbasierte Quantensimulatoren zu nutzen. Über unseren spezifischen Anwendungs-
fall hinaus glauben wir, dass die von uns entwickelten Werkzeuge einen breiten Einfluss
auf die Quantenmetrologie, Simulation und Quantencomputer mit neutralen Atomen in
optischen Gittern haben.
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Abstract

The interactions between light and atoms form the basis for a wide variety of modern
quantum technologies. By combining fundamental tools such as laser cooling and opti-
cal dipole traps, these technologies have reached the point where individual atoms can
be captured and made to interact with each other in a highly controllable manner. A key
example is the optical lattice, in which laser beams interfere to form a potential that traps
many atoms in a regular array. These atoms can be simultaneously interrogated, lead-
ing to applications in quantum metrology, where optical lattices are used to realize the
most accurate atomic clocks, and analog quantum simulation, where atoms in the lattice
mimic electrons in condensed matter systems. Inspired by the success of these applica-
tions, many proposals for further applications of optical lattices have been made, such as
for quantum simulation of different physical systems including nanophotonics and quan-
tum chemistry, and for scalable quantum computation. However, to realize these exciting
proposals, a number of new tools and technical advancements are necessary.

This thesis describes the construction of an analog quantum simulator based on ul-
tracold strontium (Sr) atoms trapped in optical lattices. These alkali earth atoms have
unique advantages for quantum simulation. The first advantage of Sr is its helium-like
electronic structure with a diverse set of electronic transitions, both broad and narrow. We
demonstrate an improved laser cooling scheme based on these two kinds of transitions.
With our scheme, we create magneto-optical traps for bosonic and fermionic isotopes of
Sr with high phase-space densities. Our method is simple to implement and is faster and
more robust than traditional cooling methods, resulting in reduced sample preparation
times. The second advantage of Sr is the existence of a doubly-forbidden clock transition
between the singlet ground state and a metastable triplet state called the clock states.
As opposed to hyperfine states that are used in atomic clocks based on alkali atoms,
these clock states can be selectively trapped at so-called tune-out wavelengths where the
two states experience highly independent optical potentials. Using a novel method, we
precisely determine the tune-out wavelength for the Sr ground state and demonstrate a
surpression of the ground state lattice potential by almost four orders of magnitude com-
pared to the excited state potential. We also use this state-dependent lattice to accurately
measure excitated state lifetimes, revealing large discrepancies in the atomic data used
to calibrate the largest systematic effect of Sr optical lattice clocks.

Besides leveraging the unique properties of strontium, we also demonstrate a new
cavity-based architecture for scaling up two-dimensional optical lattices. In conventional
free-space setups, the number of sites in an optical lattice is limited by the available laser
power, since the finite transverse extent of the beam induces a variation in the lattice
depth away from the beam center. To overcome this limitation, we developed a novel
architecture where laser power is amplified in two orthogonal lattice directions using op-
tical cavities. This amplification results in an order of magnitude larger number of usable
lattice sites compared to free-space lattices. Crucially, this amplification can occur at any



vii

desired wavelength, including the Sr tuneout wavelength where laser power is especially
limited. We characterize the cavity-enhanced lattice using high resolution clock spec-
troscopy to locally measure the lattice potential envelope and the sample temperature.
In this way, we are able to characterize the lattice depth and homogeneity, and also mea-
sure ground-band and lattice lifetimes and show that they are comparable to lifetimes in
free-space lattices.

Overall, the experiment described in this thesis is one of the first experiments world-
wide aiming to take advantage of the special properties of Sr for optical lattice-based
quantum simulators. Beyond our specific use case, we believe that the tools that we will
have developed have broad impact on quantum metrology, simulation, and computation
with neutral atoms in optical lattices.
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Chapter 1

Introduction

Optical forces from laser light are a foundational technology for modern quantum science
and are used for quantum simulation [1], quantum computation [2], and metrology [3,
4]. These applications use two different types of forces that laser light exerts on neutral
atoms: a dissipative scattering force and a conservative dipole force. The former can be
applied to cool atoms, which enhances the wave-like behavior of these atoms as their ther-
mal de-Broglie wavelength becomes comparable to the inter-particle distances among the
atoms. This cooling has been used as the first step in the creation [5, 6] of Bose-Einstein
condensates (BECs), quantum mechanical bosonic gases in which the atoms macroscop-
ically occupy the lowest quantum state. Once the atoms are cooled, they can also be
trapped and stored for a long time in an optical trap created by the conservative dipole
force. When such traps make use of interference between multiple laser beams, they cre-
ate conservative potential landscapes with a well-defined periodicity, forming artificial
crystals called optical lattices [7]. These lattices can be viewed as arrays of nearly iden-
tical microtraps that can hold ultracold atoms, and serve as an ideal platform for neutral
atom-based quantum technologies.

When the lattices are loaded with ultracold atoms, the individual atoms on a given site
interact, and lowering the laser intensity allows quantum tunneling between neighboring
sites. Such systems naturally model real materials where electrons interact and tunnel in
crystal lattices, capturing many important condensed matter models such as the Hubbard
model [8, 1]. The onsite-interaction and tunneling parameters are highly controllable in
these systems and either bosonic or fermionic atoms can be used, allowing the observa-
tion of different quantum many-body phenomena arising due to the particle statistics.
The first landmark experiment [9] was the observation of a quantum phase transition of
bosonic particles from a strongly interacting regime, where atoms arrange themselves so
that a single atom occupies a lattice site, to a weakly interacting regime, where each atom
is spread out over many sites. This phase transition is called the Mott insulator to super-
fluid transition, known to be relevant for the phase diagram of liquid helium, and was
observed by tuning the ratio of tunneling and on-site interactions of a 87Rb BEC loaded
into a three-dimensional optical lattice. Moreover, subsequent experiments demonstrat-
ing fermionic Mott insulators [10, 11] and the detection of antiferromagnetic spin cor-
relations [12, 13] have made important steps towards understanding high-temperature
superconductivity, a long-standing problem in condensed-matter physics [14].
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The aforementioned successes in cooling, trapping, and engineering complex many-
body states using neutral atoms in optical lattices have encouraged researchers to en-
vision expanding the scope of these platforms for scalable quantum computation [15,
16, 2] and quantum simulations of other physical systems such as quantum emitters in
nanophotonics [17–20]. For all these applications, precise control over at least two differ-
ent internal states, either electronic, hyperfine, or even nuclear spin states, is essential. In
quantum computing, these two states would be denoted by |0〉 and |1〉 in analogy to clas-
sical computing and together they would form the basic unit of computation, the qubit.
In nanophotonics, the aforementioned states would simulate the behavior of a quantum
emitter and a photon. Early attempts at realizing this precise control used alkali atoms
such as rubidium, due to their relatively simple electronic structure. In such atoms, elec-
tronic excited states have short lifetimes of tens of nanoseconds, which is too short for
many quantum applications, so an experimentally relevant two-level system needs to be
based on the hyperfine states of an electronic ground state. This limitation hinders the
flexibility of independent control over the two states because both states interact with
laser light in a similar fashion and also result in unavoidable decoherence effects [21].
One possible proposal to solve this problem is replacing alkali with alkaline-earth(-like)
atoms that have two electrons in their outer shell and use their electronic clock states as
the required two-level system.

Because of their two valence electrons, alkali-earth(-like) atoms such as strontium and
ytterbium have an exceptionally narrow optical transition, with linewidths on the order
of the millihertz. The electronic ground (g) and long-lived excited (e) states connected
by this narrow clock transition are called clock states due to their wide use in optical
clocks [22, 3, 23]. In particular, optical lattice clocks based on strontium have reached
state-of-the-art frequency fractional instability below 10−18 by averaging the signal from
thousands of atoms loaded in optical lattices for one hour [24]. In these experiments, the
optical lattices operate at a so-called magic wavelength [25, 26] where both clock states
experience identical light potentials. Therefore, the energy differences between the clock
states are unchanged regardless of the variation of lattice depth, allowing homogeneous
interrogation of atoms throughout the entire lattice. This trick serves as an ideal example
where the internal electronic degrees of freedom are completely decoupled from the ex-
ternal motional degrees of freedom. Magic wavelengths also exist for the hyperfine states
of alkali metal atoms; however, using such lattices results in high scattering rates and low
coherence times since the magic wavelength typically lies between transitions to excited
fine structure energy levels. An additional desirable feature of strontium atoms is the
ability to create highly state-dependent optical lattices specific to the two clock states.
This unique feature has been unexplored experimentally before the work described in
this thesis despite being highlighted in many recent theoretical proposals [21, 27–29].
In particular, these two states can be trapped completely independently by optical traps
at so-called tune-out wavelengths [30], where one of the states experiences a vanish-
ing optical trap potential. This idea has made the clock states the ideal optical qubits
or resources for entangling gates for scalable quantum information processing [21, 27–
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29] and a resource for quantum simulations of nanophotonics [17, 31–33] and quantum
chemistry [34] that require high-fidelity state-dependent control.

Beyond the advantages from the clock states, strontium atoms’ rich electronic state
structure consisting of singlet and triplet manifolds give rise to other optical transitions
with linewidths in themegahertz and kilohertz regimes. These transitions together can be
used to develop efficient laser-cooling schemes. The broad transition is used to efficiently
cool initially hot atoms with its large scattering force, and the narrow-line is subsequently
used to cool the atoms close to the quantum mechanical limit of 230 nK. The existence
of the narrow line allows the creation of a atomic cloud with a high phase-space-density
of 10−2 [35] which is three orders of magnitude higher than in a conventional magneto-
optical trap (MOT) using alkali atoms [36]. This low temperature reduces the duration of
subsequent evaporative cooling [37] (a cooling technique that discards the hot atoms),
and even allows all-optical cooling to a degenerate quantum gas when loaded in a dipole
trap [38]. All the above advantages reduce the sample preparation times [37].

Combining the aforementioned advantages of strontium, this thesis reports on the con-
struction of a new quantum simulator with a high repetition rate that employs highly
state-dependent lattices for the strontium clock states. We have (1) improved a narrow-
line laser cooling technique for the fast and robust cooling of strontium atoms [39] (2)
measured the tune-out wavelength using a new robust spectroscopic method, and (3)
demonstrated a state-dependent lattice at this wavelength that traps the excited clock
state with a high contrast ratio and long lifetime [40]. We demonstrate that this state-
dependent lattice can suppress the lattice depth of g more than 4 orders of magnitude
compared to that of e given that the laser’s frequency can be stabilized within 10 MHz.
In addition, we use the precisely measured tune-out wavelength to determine atomic
lifetimes. In doing so, we find large discrepancies to the atomic data that are used to
calibrate systematic effects in Sr optical lattice clocks, thus calling for a thorough experi-
mental reinvestigation of the relevant atomic lifetimes.

Apart from employing the distinct properties of strontium atoms, we also tackle a long-
standing problem in neutral-atom quantum technology in general: increasing the num-
ber of usable optical lattice sites. Since laser beams create optical lattices with finite laser
power, the lattice sites are no longer identical on length scales that are comparable to the
finite transverse extent of the beams because of the variation in lattice potential depth.
This inhomogeneity limits the number of usable lattice sites. Our solution uses optical
cavities to create lattice beams with enhanced optical power and large mode diameters.
With this solution, we increase the number of available lattice sites by more than an
order of magnitude compared to state-of-the-art free-space lattices [41, 42]. Currently,
most far-off-resonant optical lattices are created using high-power and low-noise Nd:YAG
lasers. Since these lasers are only available at infrared wavelengths, our solution opens
new possibilities to create large and deep lattices at any desired wavelength supported
by the cavity mirror coatings. In short, our ultracold strontium machine combines clock
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technology, state-dependent control, and cavity-enhanced optical lattices. Moreover, the
apparatus is designed for the near-future implementation of quantum gas microscopy for
single-site imaging and addressing of strontium atoms on the clock transition.

The tools developed in this thesis open up possibilities for quantum simulations of
strongly coupled light matter interfaces [17, 31–33]. For these simulations, coherent
tunneling over hundreds of lattice sites is desirable [32] which necessitates large two-
dimensional optical lattices. These simulations also require the creation of state-dependent
lattices that trap the clock states with a high contrast ratio and long lifetime, which is
challenging due to the particularly limited laser power at the necessary wavelengths. We
solve both challenges using cavity-enhanced optical lattices. Beyond this specific appli-
cation, our cavity solves the problem of scaling atom arrays for optical lattice clocks and
quantum computers to tens of thousands of qubits without any changes to the underlying
architecture.

The thesis is structured as follows:

• Chapter 2 provides a brief summary of the basics of light-matter interactions, stron-
tium energy levels, and the working principle of state-dependent lattices, cavity-
enhanced lattices, and quantum gas microscopes.

• Chapter 3 describes the experimental setup used for laser-cooling strontium atoms
and our improved narrow-line laser cooling technique.

• Chapter 4 contains the measurement of the ground state 1S0 tune-out wavelength
and demonstration of state-dependent lattices of strontium clock states.

• Chapter 5 focuses on the experimental implementation of monolithic crossed cavi-
ties and their characterization.

• Chapter 6 provides the summary and future directions of the work.

The results of the above work have been published in:

4. A. J. Park, J. Trautmann, N. Šantić, V. Klüsener, A. Heinz, I. Bloch, and S. Blatt.
Cavity-enhanced optical lattices for scaling neutral atom quantum technologies,
arXiv:2110.08073, (2021) [42].

3. A. Heinz, J. Trautmann, N. Šantić, A. J. Park, I. Bloch, and S. Blatt. Crossed optical
cavities with large mode diameters, Optics letters 46, 250, (2021) [41].

2. A. Heinz∗, A. J. Park∗, N. Šantić, J. Trautmann, S. G. Porsev, M. S. Safronova, I.
Bloch, and S. Blatt. State-dependent optical lattices for the strontium optical qubit,
Phys. Rev. Lett. 124, 203201 (2020) [40].
∗These authors contributed equally to this manuscript.

https://arxiv.org/abs/2110.08073
https://doi.org/10.1364/OL.414076
https://doi.org/10.1364/OL.414076
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.203201
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1. S. Snigirev, A. J. Park, A. Heinz, I. Bloch, and S. Blatt. Fast and dense magneto-
optical traps for strontium, Phys. Rev. A 99, 063421 (2019) [39].

Chapter 3 contains passages from 1with permission from the American Physical Society
©2019. Chapter 4 contains passages from 2 with permission from the American Physical
Society ©2020.
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Chapter 2

Optical toolbox for the new ultracold strontium
machine

In this chapter, we introduce the basic tools that we use to build our new ultracold stron-
tium machine. The toolbox that we develop fundamentally relies on the interaction of
light with individual atoms (Section 2.1). When these interactions are combined with the
distinct properties of strontium atoms (Section 2.2), efficient laser cooling, different state-
dependent lattices, and optical qubits with a long lifetime can be realized. By trapping
strontium atoms in state-dependent lattices (Section 2.3) created in optical cavities with
a large power enhancement and mode diameter (Section 2.5), we solve the limited laser
power issue and create an order of magnitude larger optical lattices. By combining all
these tools, we open up new possibilities for quantum simulations of nanophotonics and
quantum chemistry and for engineering controlled collisional phase gates (Section 2.7).

2.1 Light-atom interaction

We briefly present the basic light-matter interactions and define symbols and terminolo-
gies used throughout this thesis. Here, we consider the simplest case of a two-level atom
with internal ground (g) and excited (e) states separated by energy ~ωeg and its interac-
tion with a monochromatic electromagnetic field. We treat the light field classically using
the form,

E(r, z, t) = 1
2(E(r, z)exp(−iωt)ê + c.c.), (2.1)

with an optical angular frequency ω = kc, where k = 2π/λ is the wavenumber for wave-
length λ, c is the speed of light, and ê is the polarization unit vector. This semi-classical
picture is sufficient to understand most of the atom-light interactions discussed in this
thesis; however, we will later extend these concepts to multi-level systems focusing on
the strontium atom’s energy level structure.

Radiation pressure force

The topic of radiation force from a laser beam is discussed in many standard textbooks.
Here, we closely follow Ref. [43] and summarize their formalism. When a stationary atom
experiences an electromagnetic field of the form Eqn. (2.1), it absorbs and spontaneously
re-emits photons, which results in a dissipative force due to the momentum transfer of
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the absorbed and spontaneously emitted photons. This scattering force is given by

Fsc = Γ
2

~ks0
1 + s0 + (2∆/Γ)2 , (2.2)

where ~k is the momentum of the photon with a wavevector k = 2πk̂/λ where ~ = 2πh
is the reduced Planck constant. Here, ∆ = ω − ωeg is the detuning of the laser’s angular
frequency ω from the atomic resonance frequency ωeg, Γ is the decay rate of the atomic
transition, and s0 is the saturation parameter defined as s0 = I/Isat, where I is the light
intensity, and the saturation intensity is πhΓc/(3λ3). This force constitutes the basis of
laser cooling.

To slow down an atommoving with velocity v, light fields from two opposite directions
can be applied to the atom to generate scattering forces in two opposite directions:

Fsc = ~kΓ
2

[
s0

1 + s0 + [2(∆− k · v)/Γ]2 −
s0

1 + s0 + [2(∆ + k · v)/Γ]2
]
≈ −βv (2.3)

where k · v is the Doppler shift. In the last step of Eqn. (2.3), we have made a linear
approximation for small velocities, showing that the force acts opposite to the atom’s mo-
tion and thereby reduces the atom’s kinetic energy. However, since this approximation is
valid only for small velocities, the cooling efficiency is limited to a range of velocities that
is bounded by the capture velocity vcap ∼ ∆/k (which occurs where the magnitude of the
force is maximum). This concept of capture velocity is important for cooling strontium
atoms and partly leads to employing different cooling schemes in sequence. The cooling
scheme described in Eqn. (2.3) is called optical molasses and can be extended to two
(2D) and three (3D) dimensions, thus allowing laser-cooling in all spatial directions.

The above cooling technique can also be extended to produce a position-dependent
part of the force, thereby trapping the atoms and cooling them. In this case, we consider
a two-level atom with a total angular momentum of Jg = 0 and Je = 1 for g and e,
respectively, placed in a linear magnetic field gradient b as well as the two light fields
from opposite directions. This linear gradient splits the excited states into three Zeeman
substates mJe = 0,±1 that are separated by the energy difference ∆E = µBgJe

mJebz
′,

where µB ' 1.4 MHz/G is the Bohr magneton, gJe
is the Landé g-factor associated with

Je, and z′ is the spatial coordinate along which the gradient is applied. When the two
incident light beams have σ− and σ+ polarizations, these beams excite g to mJe = −1
and mJe = +1, respectively. In this scenario, the resonant conditions of the radiative
force, which are ∆± k · v in Eqn. (2.3), are modified to

∆± k · v ± µBgJe
mJebz

′/~. (2.4)

For this reason, the force gains a position-dependent part and enables trapping and cool-
ing in all spatial directions when extended to three dimensions. This technique is called
magneto-optical trap (MOT), which is the core step in preparing ultracold atoms. In ex-
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periments, a magnetic gradient is produced by a quadrupole magnetic field created by a
pair of anti-Helmholtz coils. At the center of the coil configuration, this magnetic field
approximately produces a linear field gradient that is twice stronger in the axial direction
compared to the transverse direction. For this reason, we will see in Section 2.2 that the
atoms cooled and trapped by a MOT occupy an ellipsoidal region.

To understand the cooling limit of optical molasses, we need to consider the addi-
tional stochastic forces acting on the atoms caused by the spontaneous rescattering of
photons into random directions. This undirected scattering leads to a random walk of
atoms in momentum space, and consequently, heats the atoms. A limiting temperature
is reached when this heating rate equals the cooling rate resulting in the Doppler tem-
perature TD = ~Γ/(2kB), where kB is the Boltzmann constant. In this limit, cooling
on a transition with larger Γ transfers a larger force, leading to more efficient cooling.
However, large Γ also results in higher limiting temperatures. The second fundamental
limit is given by the recoil temperature TR = ~2k2/(2kBm), which is set by the recoil
energy ER = ~2k2/2m on an atom with mass m transferred by its last emitted photon.
In most cases, the Doppler temperature limit is higher than the recoil limit, and other
sub-Doppler cooling techniques [44–48] are employed to reach a temperature closer to
the recoil limit. However, as will be shown later in Section 2.2, because of the transition’s
narrow linewidth, the second stage MOT of strontium atoms is limited by the recoil rather
than the Doppler temperature, requiring quantum mechanical treatment to describe the
cooling process [49]. Furthermore, in Chapter 3, we will present our modified narrow-
line cooling technique based on adiabatic passage on the narrow transition that leads to
fast and dense preparation of ultracold strontium atoms.

Far-off-resonant traps

In contrast to the dissipative force we discussed above, there is also a conservative force
that gives rise to optical traps where atoms can be trapped for long times. Here, we closely
follow the derivation presented in Ref. [50]. The light field induces a dipole moment d
that oscillates at the same frequency as the light field, and the interaction between this
induced dipole moment and the light field creates the conservative trap. This induced
dipole moment is given by d(r, t) = 1/2(d(r)exp(−iωt)ê + c.c.) with the amplitude of
the dipolemoment d(r, z) = α(ω)E(r, z)whereα(ω) is called the complex dynamic dipole
polarizability. The time-averaged interaction potential Vdip of the induced dipole moment
with the electric field E is

Vdip(r, z) = −1
2〈d(r, t) ·E(r, z, t)〉 = − 1

2ε0c
Re[α(ω)]I(r, z), (2.5)

where a factor 1/2 takes into account that the dipole moment is induced instead of being
permanent, and we used I(r, z) = cε0|E(r, z)|2/2 in the last step, where ε0 is the vacuum
permittivity. Here, we note that the quickly oscillating terms at 2ω average out due to
time averaging denoted by the angular brackets. This potential Vdip is called ac-Stark
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shift and its spatial variation exerts a conservative force on the atom, which is given by
Fdip(r, z) = ∇Vdip(r, z) = − 1

2ε0cRe[α(ω)]∇I(r, z). From the above expression, we can see
that depending on the sign of Re[α(ω)], the atom is either attracted to the maximum or
minimum of I(r, z).

As we have seen above, α(ω) is central to characterizing an optical trap. Treating an
atom as a Lorentz oscillator [50], α(ω) is given by

α(ω) = 6πε0c3 Γ
ω2
eg(ω2

eg − ω2 − iΓ ω3

ω2
eg

)
. (2.6)

For a multi-level atom, the expression above needs to be summed over all dipole-allowed
transitions connected to the state of the interest, and a full transition matrix between
the involved states has to be considered. Therefore, the complex polarizability α(ω) is
both state- and laser polarization-dependent. In Chapter 4, we will decompose α(ω) into
a spherical tensor basis to understand the light- and atom-polarization dependence on
α(ω) better. Although Eqn. (2.6) only describes the simplest case, it still captures many
important features of the polarizability. To look at these features more explicitly, let us
expand and simplify Eqn. (2.6):

α(ω) = 6πε0c3Γ
ω2
eg

[
ω2
eg − ω2

(ω2
eg − ω2)2 + (Γω3/ω2

eg)2 + i
Γω3/ω2

eg

(ω2
eg − ω2)2 + (Γω3/ω2

eg)2

]

≈ 6πε0c3Γ
ω2
eg

[ 1
(ω2
eg − ω2) + i

Γω3/ω2
eg

(ω2
eg − ω2)2

]
(2.7)

= 6πε0c3Γ
ω2
eg

[ 1
2ωeg

( 1
ωeg − ω

+ 1
ωeg + ω

)
+ i

Γω3

4ω4
eg

( 1
ωeg − ω

+ 1
ωeg + ω

)2]
(2.8)

≈ 3πε0c3Γ
ω3
eg

[−1
∆ + i

Γ
2∆2

]
(2.9)

= Re[α(ω)]− i Γ
2∆Re[α(ω)]. (2.10)

In Eqn. (2.7), we have neglected the term Γω3/ω2
eg in the denominators for simplicity,

since Γ � ωeg, ω. After expanding Eqn. (2.7), we obtain Eqn (2.8) which has the form
that is most commonly found in the literature, including Ref. [50]. To get Eqn. (2.9), we
make an additional rotating wave approximation, assuming that the laser is tuned close
to resonance |∆| = |ω − ωeg| � ωeg. In this case, we neglect the counter-rotating term
and obtain ω/ωeg ≈ 1.

Using Eqn. (2.9), let us highlight important features of Re[α(ω)] that∝ Vdip (Eqn. (2.5)).
First of all, the polarizability increases as the laser frequency ω is tuned closer the reso-
nance frequency ωeg (∆ ∼ 0) and when Γ is larger. This feature will become important
later to get an intuitive picture of the polarizabilities of the strontium clock states. Sec-
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ond, we can see that Re[α(ω)] is positive when the laser frequency is red-detuned (∆ < 0)
from the resonance and negative for the blue-detuned case (∆ > 0). This polarity leads
to a red-detuned trap that attracts the atoms towards the maximum intensity, and a blue-
detuned trap that repels the atoms away from the maximum. Although the behaviour of
the real part of α(ω) changes when many optical transitions contribute, the above state-
ment generally holds near the resonance frequency. From these features, it may seem that
detuning closer to the resonance is advantageous to make a deeper potential. However,
traps close to resonance heat atoms due to a higher scattering rate Γsc, which is given by

Γsc = − Im[α(ω)]I(r, z)
~ε0c

(2.11)

≈ Γ
∆
Vdip(r, z)

~
. (2.12)

In the last step, we used Eqn. (2.10) and Eqn. (2.5) to obtain Eqn. (2.12). Therefore, a
trade-off between lattice depth and scattering rate has to be met for a given laser power.
Due to its inverse scaling with detuning, the incoherent scattering in far-off resonant traps
is highly suppressed, so these traps are widely used to store atoms at low temperatures.
Thus, for most applications, this scattering is not the main decoherence mechanism, al-
though exceptions exist, such as experiments that require preparing many-body states at
very low energy [51, 52] scales or trapping atoms in extremely deep optical lattices [53].
In later sections, we will take a closer look at the polarizability of the ground and excited
states of strontium atoms to engineer state-dependent lattices. By doing so, we will see
that the simple relationship between Γsc and Vdip in Eqn. 2.12 does not hold anymore for
a multi-level atom, i.e. even when Vdip is zero due to the vanishing Re[α(ω)], the atom
can still scatter photons in the lattice due to the light intensity.

Dipole trap

Throughout this thesis, we will only consider red-detuned dipole traps. Therefore, this
section summarizes the important trap parameters for the red detuned trap made with

a laser beam with E(r, z) = E0
w0
w(z)exp

[
− r2

w2(z) − i
(
kz + kr2

2R(z) − ψ(z)
)]

where w(z) =

w0
√

1 + z/zR is the 1/e2 beamwaist with the Rayleigh range zR = πw2
0/λ and aminimum

beam waist w0 at the focus z = 0, and r and z are the radial and axial coordinate,
respectively. Moreover, R(z) = z[1 + (zR/z)2] is the radius of curvature and ψ(z) =
arctan(z/zR) is the Guoy phase. Such a beam has a Gaussian intensity profile of

I(r, z) = E2
0

2cε0
w2

0
w2(z)exp

(
− 2r2

w2(z)

)
= 2P
πw2(z)exp

(
− 2r2

w2(z)

)
, (2.13)

whereP = πw2
0I0
2 is the power of the beamwith peak intensity I0 = E2

0/(2cε0). Such a trap
forms a dipole trap that is cylindrically symmetric. Using Eqn. (2.5) and approximating



Chapter 2 Optical toolbox for the new ultracold strontium machine 11

the trap potential at the center, we arrive at

Vdip(r, z) ≈ Re(α)P
πcε0w2

0

[
1− 2

(
r

w0

)2
−
(
z

zR

)2]
. (2.14)

This above expression results in a harmonic trap with radial (ωr) and axial trap (ωt)
frequencies are

ωr =
√

4V0
mw2

0
, ωt =

√
2V0
mz2

R

, (2.15)

where V0 = Re(α)P/(πcε0w2
0) is the trap depth. In reality, gravity also plays a role.

Therefore, the effect of gravity should be taken into account, which reduces the trap
depth. In this thesis, we will make it clear by stating gravity compensated if the depth
includes gravity.

Optical lattices

Here, we derive important trap parameters for optical lattices. For simplicity, we will first
consider a plane wave of the form E(r, z) = E0exp(ikz) that is retro-reflected, giving rise
to an intensity profile

I(x) = 1
2cε0|E0exp(ikz) + E0exp(−ikz)|2 = 4I0cos2(kz). (2.16)

Using Eqn. (2.5) once more, we see that such an intensity pattern creates an infinitely
extended periodic potential with a periodicity of λ/2 with V0 = 2I0Re[α(ω)]/(ε0c). For a
deep lattice, we can approximate each well as a harmonic trap potential and extract the
lattice trap frequency

ωt = 2πνt =

√
2k2

m
V0 = ωrec

√
4V0
Erec

, (2.17)

where Erec = ~ωrec = ~2k2/(2m) = h2/(2mλ2) is the lattice recoil energy given by the
lattice wavelength λ.

As we have seen, a more realistic model for a laser beam is a fundamental trans-
verse electromagnetic mode (TEM00) with a Gaussian intensity profile which prevents
the generation of an infinitely extended lattice. As we have seen in Eqn. (2.13) and
Eqn. (2.14), the radial part of the intensity profile leads to a harmonic confinement of
the form mω2r2/2 on top of the lattice. We will see in Section 2.5 that this harmonic
confinement limits the number of usable lattice sites for both quantum simulators and
optical lattice clocks.
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2.1.1 Two level system - Optical qubit

We have seen how the laser force can be used to cool and trap atoms. Here, we want
to focus on a coherent manipulation of the electronic states of an atom using a near
resonant light field, which is the basis of how we drive the strontium clock states. We
once again follow the discussion in Ref. [43] and consider the simplest case, a plane wave
of the form E(r, z) = E0exp(ikz). Neglecting spontaneous scattering, one can solve the
time-dependent Schrödinger equation with the Hamiltonian of the form ~ωeg |e〉 〈e| −
d(r, t) · E(r, z, t) to calculate the time dynamics of g and e driven by near-resonant
light. Assuming the atom is initialized in g, the above calculation results in an oscillatory
behavior of the probability for finding the atom in e,

Pe(t) = Ω2

Ω2
eff
sin2(Ωefft/2). (2.18)

Here, Ω = d · E/~ is the Rabi frequency that characterizes the interaction strength and
Ωeff =

√
|Ω|2 + ∆2 is the effective Rabi frequency. When the laser is resonant, Ωeff = Ω

and the oscillation becomes the slowest. A frequent parameter used to characterize this
interaction strength is tπ = π/Ω which is defined as the time required for the Pe to reach
1 under the resonant condition.

The more realistic picture including spontaneous emission which can be done by using
a density matrix formalism and adding the decay due to spontaneous scattering Γ phe-
nomenologically. This method results in two equations describing the dynamics of the
ground (ρgg) and excited (ρee) state populations and another two describing the coher-
ences ρge and ρeg:

dρgg
dt

= +Γρee + i

2(Ω∗ρ̃eg − Ωρ̃ge)

dρee
dt

= −Γρee + i

2(Ωρ̃ge − Ω∗ρ̃eg)

dρ̃ge
dt

= −
(Γ

2 + i∆
)
ρ̃ge + i

2Ω∗(ρee − ρgg)

dρ̃eg
dt

= −
(Γ

2 − i∆
)
ρ̃eg + i

2Ω(ρgg − ρee)

(2.19)

where ρ̃ij ≡ ρijexp(−i∆t) and ∗ denotes the complex conjugate. Other decoherence
mechanisms due to elastic collisions, a finite laser linewidth, and Doppler effects can also
be included phenomenologically.

Solving the steady state of Eqn. (2.19), one obtains a steady state excited state popu-
lation of

ρee = s0/2
1 + s0 + (2∆/Γ)2 . (2.20)
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When s0 � 1, ρee approaches 1/2 and the absorption spectrum obtains the power-
broadened linewidth of the transition Γ′ = Γ

√
1 + s0. Equation (2.19) brings us back

to the radiation pressure force (Section 2.1) and reveals the origin of Eqn. (2.2). In
steady state, the excitation and decay rates balance, and the resulting the total scattering
rate Γsc = Γρee. Then, the resulting force is simply the momentum per photon ~k × Γsc.

When the effects of decoherence occur at slower timescales than the interaction dynam-
ics, the population dynamics will resemble that of Eqn. (2.18). Therefore, the quality of
Rabi oscillations provides a good indication of how well-decoupled a two-level system is
from decoherence. In many cases, the spontaneous scattering fundamentally limits treat-
ing atomic states connected by an optical transition as an ideal two-level system or an
optical qubit. However, this obstacle is removed for the strontium clock states which has
an ultra-narrow linewidth Γ of 1.35(3) mHz [54] (τ ∼ 150 s). Despite this advantage, we
will see later there are other decoherence mechanisms that hinder their quality as an op-
tical qubit such as inelastic collisions. However, many of these obstacles can be removed
by technical advances or by providing better experimental platforms for strontium. For
instance, decoherence due to inelastic collisions can be solved by loading strontium atoms
in a 3D optical lattice with an occupancy of a single atom per site.

2.2 Strontium

In this section, we highlight the distinct properties of strontium atoms and apply the basic
light-atom interactions, discussed above, to strontium atoms. By doing so, we find that
strontium offers distinct advantages for laser-cooling and engineering state-selective con-
trol. As we highlight these features, we will also provide more insight into our ultracold
strontium machine.

Scattering length a [a0]
Isotope Abundance Nuclear spin Statistics 84Sr 86Sr 88Sr 87Sr
84Sr 0.56 % 0 Bosonic 123
86Sr 9.86 % 0 Bosonic 32 800
88Sr 82.5 8% 0 Bosonic 1700 97 -2
87Sr 7.00 % 9/2 Fermionic -57 162 55 96

Table 2.1 Basic properties of naturally occurring strontium isotopes. The ground state scattering
length data is taken from Ref. [37].

Strontium is an alkaline earth metal and has four naturally occurring isotopes with
different abundances as shown in Table 2.1. Of the four, three are bosonic isotopes with
a nuclear spin of I = 0, and one is fermionic with a nuclear spin of I = 9/2. Looking at
their electronic structures, strontium has two valence electrons that can form either a sin-
glet or a triplet state as a pair, depending on the orientation of their spins. The electronic
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ground state is the singlet state 1S0 and is connected to the upper singlet 1P1 and triplet
excited states 3PJ with J = 0, 1, 2 via dipole-allowed transitions as shown in Fig. 2.1
for 87Sr. These transitions come with a variety of different transition strengths because
the intercombination lines, i.e. the 1S0-3PJ transitions, are much weaker compared to
the 1S0-1P1 transition due to the selection rules. These lines are spin forbidden, and the
1S0-3P0,2 transitions are additionally forbidden by the angular momentum selection rule.
However, the LS coupling regime relaxes for many-electron atoms, allowing the 1S0-3P1
transition to occur with a narrow linewidth. Moreover, hyperfine mixing in 87Sr allows
a direct single photon transition to 3P1 from 1S0, where this transition has a millihertz
linewidth (a similar can occur in 88Sr with an external magnetic field.) For this reason,
the dipole-allowed transitions from 1S0 feature linewidths in the megahertz (blue MOT),
kilohertz (red MOT), and millihertz regimes (clock and slicing), as labeled in Fig. 2.1.
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Figure 2.1 Strontium energy level diagram (adapted from Ref. [55]). The important transitions
for our ultracold quantum simulator are highlighted with the appropriate labels. The
indicated spectroscopic data is taken from Refs. 1: [56], 2: [57], 3: [58], 4: [59]. The
lifetimes in bold are obtained from this work discussed in Chapter 4.

The advantages of laser cooling strontium atoms come from the variety of available
transition strengths. Here, we are interested in the two main cooling transitions: the
broad blue 1S0-1P1 transition with a linewidth Γ of 2π× 30.41(5) MHz and the narrow
red 1S0-3P1 transition with Γ = 2π× 7.423(7) kHz. For simplicity, let us first discuss laser
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cooling of the bosonic isotopes that have vanishing nuclear spins, since the hyperfine
structures of the fermionic isotope introduce further complications. As we have seen in
Eqn. (2.2), a broader transition allows a larger momentum transfer during laser-cooling.
Therefore, the blue transition is used for initial laser-cooling and slowing of atoms effus-
ing from a hot oven at∼500 ◦C to the∼30 m/s capture velocity of the blue MOT operating
on the blue transition.

While operating the blue MOT, the 1P1 atoms decay into 1D2 with a branching ratio
of 1:20000 [57] and subsequently decay further into 3P1,2 states with a branching ratio
of 2:1, as illustrated in Fig. 2.1. Therefore, the atoms lost from the blue MOT cycle due
to this decay channel need to be brought back into the cycle. Fortunately, the atoms de-
cayed into 3P1 return to the ground 1S0 state at a rate given by the natural decay rate
Γ3P1 = 2π× 7.4 kHz (τ3P1=21 µs). However, the 3P2 state is metastable with a lifetime
of 520 s [60], and the 3P2 Zeeman substates with m(3P2)=1,2 can be trapped in the
magnetic trap created by the quadrupole field of the blue MOT. The atoms accumulated
in this 3P2 magnetic trap can be stored for a long time that is limited only by the colli-
sions with the background gas [61]. This vacuum-limited lifetime can be several minutes,
depending on the pressure of the vacuum chamber. For this reason, these accumulated
atoms need to be repumped back to 1S0 via optical pumping to go back to the blue MOT
cycle. There are many choices for the possible repump trajectories that are detailed in
Ref. [61]. One option, which is used in this thesis, is to repump the atoms via the 3P2-
3S1 and 3P0-3S1 transitions. To achieve this, we use 707 nm and 679 nm lasers resonant
with each transition, respectively. In this repumping scheme, 3P2 is excited to 3S1 via the
707 nm laser beam, and the excited 3S1 state decays back into the triple manifolds, 3P0,
3P1, and 3P2 according to the branching ratios specified in Fig. 2.1. The 3P0 clock state
is also metastable with a lifetime of ∼150 s. For this reason, the role of the 679 nm beam
is to excite 3P0 back to 3S1, preventing the loss of atoms via this decay channel to 3P0.
The blue MOT cycle is closed by operating the MOT with the repumping beams, and this
MOT is called a bright steady-state blue MOT.

As noted above, the atoms can also be accumulated in the 3P2 magnetic trap. In this
case, the dim blue MOT operates in the absence of the repump beams to allow the atoms
to occupy the 3P2 magnetic trap. The repump beams are used later to bring the accu-
mulated atoms back from the 3P2 states to 1S0. Either method, accumulating atoms in
the bright steady-state blue MOT or in the 3P2 magnetic trap, is widely used in strontium
experiments. Nevertheless, the vacuum-limited lifetime of the 3P2 states in the magnetic
trap allows for prolonged atom loading time, which is critical for isotopes with low abun-
dance such as 84Sr [62].

The final temperature after the blue MOT, regardless of whether the atoms are accu-
mulated in the bright steady-state blue MOT or the 3P2 magnetic trap, is limited by the
Doppler temperature, which is 0.7 mK. To cool the atoms further, the MOT is switched
over from using the broad blue 1S0-1P1 transition to the narrow red 1S0-3P1 transition,
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which has a linewidth ∼4000× narrower. Laser cooling using this narrow transition re-
sults in a Doppler temperature of 180 nK, which is lower than the recoil temperature
of 230 nK, enabling cooling down to the fundamental limit of laser cooling. However,
because of the large gap between the linewidths of the blue and red transitions, the cap-
ture velocity of the standard red MOT is far smaller than the final velocity of atoms in
the blue MOT. This discrepancy results in losing most of the atoms during the transfer
between the two stages of the MOT. The solution to this problem is to artificially broaden
the capture velocity of the red MOT by modulating the laser frequency and reducing the
magnetic gradient by an order of magnitude.

This initial red MOT stage, where the laser spectrum is artificially broadened via fre-
quency modulation, is called the broadband red MOT [49, 37, 63]. During this stage,
sinusoidal modulation or rapid scanning of the laser’s frequency using an acousto-optic
modulator (AOM) creates sidebands that typically span a detuning range between−150 kHz
to −8 MHz with a spacing of 20 kHz. It can be seen that each comb performs laser cool-
ing at a detuning given by the comb’s frequency with its respective power broadened
linewidth Γ. Here, each comb has an intensity I of roughly I/Ncomb, where Ncomb is the
number of comb lines. Each comb interacts with the atoms within the capture radius
rcap that is roughly given by the position where the amplitude of the radiative force is
maximum. This maximum point occurs when the detuning balances the Zeeman shift
(Eqn. (2.4)), rcap = ∆/(µBgJ(3P1)(∂B/∂z′)) with gJ(3P1) = 1.5. Considering all three
spatial directions, this region is an ellipsoid due to the stronger axial magnetic field gradi-
ent of the quadrupole MOT field configuration. When Γ′ = Γ

√
1 + s0 > ∆ for each comb,

the cooling achieved by a comb resembles the standard broadband Doppler cooling, and
the atoms occupy the whole ellipsoid [49, 37]. In contrast, for the case when Γ′ < ∆,
each comb produces a box potential that is tilted along gravity, causing the atoms to sag
at the bottom of the ellipsoid [49, 37]. In particular, when Γ′ ∼ Γ, the radiative force is
only 16× larger than gravity (~kΓ/(2mg)); thus the effect of gravity cannot be neglected.
In many cases, each comb of the broadband stage operates in the second regime Γ′ < ∆,
and due to the overlapping ellipsoids from many comb lines, the atoms occupy the entire
volume of the largest ellipsoid given by the comb with the largest detuning.

As a next step, the laser’s frequency modulation is turned off to compress the red MOT,
and the detuning is tuned close to the resonance. At the same time, the beam inten-
sity dramatically is reduced as well. This stage is called the single-frequency red MOT.
Careful tuning of the detuning, power, and magnetic field gradients is required to obtain
high phase-space density. In this single frequency MOT, a phase-space-density cloud of
10−2 [35] has been created, which is three orders of magnitude larger than a conven-
tional MOT using alkali atoms [36]. The single-frequency red MOT has its characteristic
pancake shape because the atoms sag towards the bottoms of the ellipsoid, as discussed
above. Another interesting thermal-mechanical property is that when Γ ∼ ∆, the cooling
mechanism requires a full quantum treatment since Γ ∼ ωrec. In this case, the tem-
perature approaches the recoil limit of 230 nK. The three distinct thermal-mechanical
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laser-cooling dynamics occurring at Γ′ > ∆,Γ′ < ∆, and Γ ∼ ∆, are studied in detail in
Ref. [49].
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Figure 2.2 The 87Sr hyperfine level structures (adapted from [61]). The hyperfine splittings δhfs =
∆/(2π) are calculated with reference to a state assuming I = 0, which is denoted by
the dashed lines. The splittings are expressed in MHz.

Let us shift our focus to laser cooling the fermionic isotope 87Sr. Due to the non-
vanishing nuclear spin I = 9/2, the states with non-zero angular momentum J ( 1P1,
3P1, and 3P2) split into multiple hyperfine states as shown in Fig. 2.2. Moreover, the
ground state 1S0 splits into ten magnetic substates (mF ), and the hyperfine states of the
excited states also split into 2F ′+ 1 magnetic substates (mF ′), where F ′ specifies the hy-
perfine state of the excited electronic states. These hyperfine structures make the cooling
procedure more complicated.

For the blueMOT, the hyperfine states of 1P1 are not resolved due to the broad linewidth
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of the blue transition. Ideally, the MOT should operate using the 1S0 (F = 9/2)-3P1
(F ′ = 11/2) transition; however, this unresolved spectrum results in unfavorable exci-
tation to the F ′ = 7/2 and F ′ = 9/2 states. There has been a rough estimate that the
fermionic blue MOT performs worse in terms of the accumulated atom number com-
pared to the bosonic MOT [61], but there has not been a detailed study. Moreover, the
repumping scheme discussed above becomes more complicated as well due to the hyper-
fine splitting of the 3P2 state. Because of this reason, the 707 nm repump beam is typically
frequency modulated to address larger frequency ranges. Despite these complications, in
practice, operating the fermionic blue MOT is similar to operating the bosonic blue MOT,
other than the need to shift the laser frequencies appropriately to address the fermionic
isotope.

In contrast, the fermionic red MOT [64, 65, 37] changes more dramatically than the
bosonic red MOT. The 3P1 state splits into three hyperfine states of F ′ = 11/2, 9/2, and
7/2. Because of the narrow linewidth and large hyperfine splittings, the transitions to
each hyperfine state of 3P1 from 1S0 are resolved. Therefore, the red MOT can selec-
tively operate on the 1S0 (F = 9/2) - 3P1 (F ′ = 11/2) transition without any unwanted
excitations to the other 3P1 hyperfine states. However, due to a large difference in the
Landé g-factors (gF ′(3P1 F

′ = 11/2)/gF (1S0) � 1) between the 1S0 (F=9/2) and 3P1
(F ′ = 11/2), the red MOT beams in a given magnetic field can be resonant, red-detuned
or blue-detuned depending on the ground mF state, leading to some transitions being
repelled by or attracted to the trap’s center. The solution to this problem is to use an
additional beam to stir [64] the populations of mF states. Therefore, the red MOT for
87Sr operates using two colors, one stirring light on the 1S0 (F = 9/2) - 3P1 (F ′ = 9/2)
transition and the other used as the trapping light, which uses the 1S0 (F = 9/2) - 3P1
(F ′ = 11/2) transition. The stirring light efficiently mixes the population of the mag-
netic states via optical pumping, and the trapping light operates the MOT. The fermionic
red MOT also operates in two stages, broadband and single-frequency MOTs, and cools
the atoms to ∼1 µK. However, unlike the bosonic isotope, the atoms occupy the whole
volume of the ellipsoid, even in the single-frequency MOT stage, because the resonant
conditions for each mF - mF ′ states are different.

So far, we have described the operation of a conventional red MOT. Recently, narrow-
line optical molasses based on the rapid adiabatic passage [66–69] gained much attention
due to their efficiency and robustness. We have modified our red MOT based on this new
technique for both bosonic and ferminoic isotopes, and describe it in Chapter 3.

Because of the low temperature of the atomic cloud after the red MOT, atomic clouds
with a phase-space density of 0.3 [37] have been created by carefully loading the laser-
cooled cloud into a dipole trap. This phase-space density is only an order of magnitude
lower than the critical density required for a BEC. Due to this advantage, the BEC or
degenerate Fermi gas can be produced without large atom loss and with a reduced cycle
time using strontium atoms, even after the lossy evaporative cooling step. All naturally
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occurring strontium isotopes have been brought to quantum degeneracy [37, 61], and in
particular, 84Sr has been brought to quantum degeneracy using all-optical cooling [38]
methods without the evaporative cooling step. As we will see later in Section 2.4, the
narrow linewidth of the 1S0-3P1 transition also enables cooling of the atoms loaded in
the motional ground state of optical lattices [70] because the sideband spectrum in the
optical lattices is well-resolved. This technique is called direct sideband cooling and is
part of our sample preparation step (Chapter 5).

Next, we turn to the ultra-narrow clock transition 1S0 (g) -3P0 (e). Although this tran-
sition is doubly forbidden, a small hyperfine mixing in 87Sr allows direct single-photon
excitation of the clock transition [71] with a linewidth of 1.35(3) mHz [54]. In the
bosonic isotope 88Sr, the hyperfine structure is absent, and so is the mixing. One way
to access the transition is to apply an external magnetic field that creates the required
state-mixing [72]. Given a fixed intensity, one needs to apply ∼1800 G to achieve the
same Rabi frequency as in 87Sr. A moderate magnetic field as low as ∼20 G has been
used to induce the transition; however, this approach results in a strongly attenuated
Rabi frequency compared to 87Sr. Despite this additional requirement, the 88Sr clock
transition is also widely used because of the isotope’s high natural abundance and simple
structure. To take full advantage of the narrow clock transition, the laser-cooled atoms
need to be loaded into optical lattices that confine the atoms tightly. Without this tight
confinement, the clock excitation is hampered by Doppler broadening [73], which can be
as large as 50 kHz if we consider a temperature of ∼µK for the laser-cooled sample. Be-
cause of the ultra-narrow clock transition and the tight confinement, ultracold strontium
atoms loaded into deep magic optical lattices can be interrogated for a long time with
reduced Doppler-related and ac-Stark light shift-related uncertainties. More importantly,
each lattice site confining atoms can be treated as an independent quantum system; thus
the signals from hundreds of lattice sites can be averaged, improving the signal-to-noise
ratio of the clock interrogation. The above platform gives rise to optical lattice clocks,
which have reached state-of-the-art frequency fractional instability below 10−18, a value
obtained by averaging the signal for one hour [24]. Both fermionic and bosonic strontium
optical lattice clocks are widely used for their distinct advantages. Using the fermionic
isotopes at ultralow temperatures can reduce collisional clock shifts because of the Pauli
exclusion principle and allows easier excitation of the clock states, which does not require
an external magnetic field. In contrast, the use of 88Sr allows easier laser cooling and a
higher signal-to-noise ratio due to the isotope’s large natural abundance. Therefore, 88Sr
lattice clocks are particularly attractive for transportable lattice clock setups.

In this thesis, we also use the strontium clock states in optical lattices but for very
different purposes. We will make use of both high and low intensity lattice regimes.
In general, we will realize a quantum simulator at a low intensity lattice regime where
atoms tunnel between neighboring lattice sites and the lattice depth will be raised for
detection, preventing any quantum tunneling. In this deep lattice, we will make atoms
fluorescent by applying a resonant light, then pick up the resulting fluorescence by us-
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ing a high-resolution microscope to reconstruct the atom’s density profile in each lattice
site. This technique is called quantum gas microscopy [74, 75]. We are also interested in
addressing both fermionic and bosonic species to enlarge the scope of simulations pro-
vided by their different particles statistics and scattering properties. Crucially, we will
use state-selective traps to individually control 1S0 (g) and 3P1 (e). Unlike optical lattice
clocks, which operate with optical lattices at a magic wavelength to completely decouple
the internal electronic degrees of freedom from the external motional degrees of free-
dom, we operate our lattices at the so-called tuneout wavelength to maximally couple
the internal and external degrees of freedom for highly state-sensitive traps. The gener-
ation of such state-selective traps yields longer atom lifetimes at a fixed lattice depth for
strontium than for alkali metal atoms. We discuss this comparison in detail in the next
section, Section 2.3. Moreover, the first proof-of-principle experimental demonstration of
such lattices for strontium is introduced in Chapter 4.

Another interesting property of the fermionic clock states is decoupling of the clock
states’ nuclear spins I from the electron spins due to the vanishing electronic angular
momentum J , i.e I · J = 0 [76, 77]. For this reason, the fermionic clock allows an
unique quantum computing architecture where the information is stored in the nuclear
spin states and the state manipulation is done using electronic qubits. We will briefly
discuss one of such proposals that use state-dependent lattices for entangling gates in
Section 2.7.

Lastly, let us discuss 3P2, the state that was already briefly introduced for the discussion
of the blue MOT. Similar to the clock transition, the 1S0-3P2 transition is doubly forbid-
den in the pure LS coupling picture. However, a small hyperfine mixing in 87Sr allows a
dipole transition between 1S0 (F=9/2) and 3P2 (F’=7/2,9/2,11/2) with a linewidth of
1 mHz [78], and the 1S0 (F=9/2)-3P2 (F’=5/2,13/2) transitions are not dipole-allowed
but can be accessed as a magnetic quadrupole transition (M2) [79, 80]. In the bosonic
isotope, 1S0-3P2 are also allowed as M2 [79, 81], and the transition strengths depend on
the polarization of the light and magnetic field [81, 79]. Compared to the clock states,
3P2 (mJ ′ 6= 0) features both narrow linewidth and enhanced sensitivity to an external
magnetic field. These properties make 3P2 ideal for single-site addressing, thus 3P2 can
be used to read-out information in quantum computation. For our machine, this transi-
tion is ideally suited for preparing atoms in a single layer of a 3D optical lattice, which is
a necessary preparatory step for quantum gas microscopy. This step, which we colloqui-
ally referred to as slicing, is currently being implemented in the laboratory and will be
detailed in the subsequent Ph.D. thesis.

2.3 Strontium in state-dependent optical lattices

In this section, we compare the dynamic polarizability α(ω) of rubidium and strontium.
This comparison will show why strontium permits a more versatile generation of state-
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dependent optical traps where atoms can be trapped with long lifetime. For a rubidium
atom, whose energy-level structure is shown in Fig. 2.3(a) top, we take the two hyperfine
states of 87Rb, 2S1/2 (F = 1) and 2S1/2 (F = 2) that are separated by the energy ~∆hfs
with ∆hfs = 6.8 GHz, as the ground g′ and excited e′ states, respectively, to construct an
optical qubit. It is common to consider the upper hyperfine state of 2S1/2 as e′ instead
of electronic excited states, 5P3/2 or 5P1/2, because the electronic excited states have a
short lifetime of tens of nanoseconds, making them unsuitable for many quantum appli-
cations. For strontium, we take the two electronic clock states: |g〉 =

∣∣1S0, J = 0
〉
and

|e〉 =
∣∣3P0, J = 0

〉
of 88Sr. The notation above will be used throughout the rest of the thesis:

g and e refer to 1S0 and 3P0 of strontium, respectively. Although we consider 88Sr for this
comparison because the calculation of α(ω) for 87Sr becomes more complicated due to
the hyperfine states (detailed in Chapter 4), the same comparison holds for 87Sr.

Before we look at the energy level structures of the two atoms in detail, let us review
the concept of dynamical polarizability α(ω), which was introduced in Section 2.1. This
polarizability is one of the core parameters that determine optical trap depth, and we
provided its expression for a two-level system in Eqn. (2.6). Here, we extend this ex-
pression to a multi-level atom and highlight the important differences compared to the
two-level case. For a multi-level atom in a state k, all dipole-allowed transitions to higher
states l should be considered, leading to

α(ω) = 6πε0c3∑
l

Γlk
ω2
lk(ω2

lk − ω2 − iAl ω
3

ω2
lk

)
(2.21)

≈ 3πε0c3∑
l

Γlk
ω3
lk

[ −1
∆lk

+ i
Al

2∆2
lk

]
(2.22)

=
∑
l

(
Re[αl(ω)]− i Al2∆kl

Re[αl(ω)]
)
. (2.23)

Here, ∆lk = ω − ωlk where ωlk is the resonance frequency of the transition between l
and k, and αl(ω) is the polarizability contribution from the state l. Compared to α(ω) of
a two-level system (Eqn. (2.6)), Eqn.(2.21) has two modified terms: a partial decay rate
Γlk and a total decay rate Al = 1/τl. Since l can decay into multiple states, Γlk takes into
account a probability of l decaying to k, and this probability depends on the laser polar-
ization as well as the electronic and nuclear angular momenta of the involved states. We
will look at these dependencies in more detail in Chapter 4. By complex expanding and
approximating Eqn. (2.21) as discussed for the two-level case, we see that Re[αl(ω)] ∝ Γlk
and Im[αl(ω)] ∝ ΓlkAl in Eqn. (2.22). Thus, Vdip ∝

∑
l ΓlkI(r) and Γsc ∝

∑
l ΓlkAlI(r)

according to Eqn. (2.5) and Eqn. (2.11), respectively. This observation follows from the
fact that the excited state population gets driven by Γlk, but the rate at which it scatters is
given by the total decay rateAl. In addition, previously, we observed a simple relationship
Γsc ∼ Vdip (Eqn. (2.12)) for a two-level system. However, as shown in Eqn. (2.23), this
simple relationship does not hold for a multi-level atom because of the prefactor Al/∆kl
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in the imaginary term.
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Figure 2.3 Polarizability comparison between 87Rb and 88Sr. (a). Simplified 87Rb level dia-
gram [top] and Re([α(ω)]) of |g′〉 =

∣∣2S1/2, F = 1,mF = 0
〉
(blue) and |e′〉 =∣∣2S1/2, F = 2,mF = ±1

〉
(red) are shown below in units of a.u. (1 a.u.=4πε0a3

0). (b)
Simplified Sr level diagram, and Re[α(ω)] of |g〉 =

∣∣1S0
〉
[blue] and |e〉 =

∣∣3P0
〉
[red]

are shown below. At the “magic wavelength” [star], g and e experience the same po-
larizability, thus the same trap depth. At the “tune-out wavelength” of g (g′), g (g′)
is free to move and e (e′) is tightly trapped [yellow circle], and at the e (e′) “tune-out
wavelength”, e (e′) is free to move [gray circle].

Let us first calculate Re[α(ω)] of a rubidium atom. Looking at its energy structure in
Fig. 2.3(a) top, we observe that both g′ and e′ of 87Rb are connected to the same excited
electronic states 5P1/2 and 5P3/2 via the dipole-allowed transitions that are referred to
as the D1 and D2 lines, respectively. For this reason, apart from the small differences in
Γlk and in the detuning due to ∆hfs, the numbers that go into calculating α(ω) for g′ and
e′ are similar. To construct an optimal state-dependent trap, we consider a case where
the difference between the two α(ω) is maximized: 87Rb trapped in circularly polarized
light (σ+). The circular polarization lifts the degeneracy of the magnetic sub-states and
maximizes the difference in Γlk between m = 0, and ±1. The calculations of Γlk for
the different magnetic substates are described in Ref. [50], and we use their results to
calculate Re[α(ω)] of g′ and e′ as a function of wavelength, as shown in Fig 2.3(a). To



Chapter 2 Optical toolbox for the new ultracold strontium machine 23

Position
En

er
gy

antimagic

magic

tune-out

Figure 2.4 Illustration of different types of optical lattices generated with magic, tune-out, and
anti-magic wavelengths (from Ref. [82]). The potential shown in black is a reference
potential for g, and blue, green, and red are the possible potentials for e or vice versa.

calculate Re[α(ω)], we made an approximation that ∆� ∆hfs. As we expected, the plots
show similar qualitative behaviors for m = 0,±1 states because they all couple to the
same excited electronic states.

For the 88Sr clock states, as shown in Fig. 2.3(b) top, g and e are coupled to completely
different families of the excited electronic states. The main contributions to α(ω) of g are
the 1S0-1P1 and 1S0-3P1 transitions. In contrast, the main transitions that contribute to
α(ω) of e are 3P0-3D1, 3P0-3S1, and other upper states that are not shown in Fig. 2.3(b).
For this reason, Re[α(ω)] of the clock states shown in Fig 2.3(b) bottom illustrate quali-
tatively different behaviors between the two.

In Fig 2.3(b), we highlight several special wavelengths: the magic and tune-out wave-
lengths that are indicated with stars and circles, respectively. At magic wavelengths, the
two clock states have matching Re[α(ω)]; thus, the optical traps generated at these wave-
lengths produce identical trap depths for the two. Although such wavelengths exist at
both 497 nm and 813 nm, the latter is used more widely because of its flatter slope as a
function of wavelength, which leads to the insensitivity of a trap depth to the trap’s fre-
quency drifts. At tune-out wavelengths, Re[α(ω)] of one of the states completely vanishes.
As a result, one can generate a highly selective trap that traps only one specific state with
non-vanishing Re[α(ω)]. For strontium atoms, the tune-out wavelengths of 1S0 and 3P0
occur at 689 nm and 633 nm, respectively. Using these properties, various different types
of optical lattices can be generated as illustrated in Fig. 2.4. In the figure, we also show
“anti-magic" lattices where the clock states are trapped at alternating lattice nodes at the
same trap depths (αg(ω) = −αe(ω)). For the strontium clock states such traps can be
generated at wavelengths of 650 nm or 400 nm.

We have seen qualitatively why strontium is the better choice compared to rubidium
for constructing state-dependent lattices. However, the special wavelengths such as magic
and tune-out ones also exist for rubidium [83, 84] (the magic wavelength for rubidium is
not shown in Fig 2.3(a) as it requires considering a case with different laser polarization).
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Now, let us answer an important question: how much better is a state-dependent trap for
88Sr than the one for 87Rb? To answer this question, we consider a scenario where the
ground state is trapped in a completely state-dependent lattice generated at a tune-out
wavelength of the excited state. We will consider the above scenario for both 87Rb and
88Sr and compare the trapped ground state’s scattering rates Γsc for both cases at the
same trap depth.

Since Γsc ∝ Im[α(ω)]I(r, z), we first compare the intensity I(r, z) required to generate
the same trap depth for the two cases. For 87Rb, the excited state tune-out wavelength λe′

lies at 792 nm or 788 nm if we treat e′ as F = 2 (m=+1) or F = 2 (m=−1), respectively
(Fig. 2.3(a)). Let us take m = −1 as e′ because λe′ is slightly further detuned from the
D1 and D2 lines that lie at 780 nm and 795 nm, respectively, which would reduce Γsc.
For 88Sr, the e tune-out wavelength λe occurs at 633 nm. At the wavelengths λe′ and λe,
Re[α(ωe′,e)] of g′ and g are ∼−6000 a.u. and ∼450 a.u. with a.u=4πε0a3

0, respectively. For
this reason, an order of magnitude more intensity is required for the case of 88Sr.

Now let us take a look at the other term, Im[α(ω)], that also contributes to Γsc. This
term scales as (ΓlkAl/∆lk)2 for each of the transitions, according to Eqn. (2.22). The total
decay rateAl of 5P3/2 and 5P3/2 of 87Rb is∼ 2π×6 MHz for both states, and Γlk is modified
from Al by the relative transition strengths given by 2

3(1 + gFmF ) and 1
3(1− 2gFmF ) for

theD1 andD2 lines, respectively [50]. Here, gF = −1/2 and 1/2 for F = 1 and 2, respec-
tively. Because these relative transition strengths result in only small corrections for the
estimates of our interest, we neglect these factors for simplicity and treat Γlk ∼ Al. Then,
calculating (Al/∆lk)2 results in ∼3×10−12 from eachD1 andD2 transition. For 88Sr, the
two contributing transitions to Γsc of g are the 1S0-1P1 and 1S0-3P1 transitions, as shown
in Fig. 2.3(b) top. Even without doing the calculation, we can already see that these two
transitions are much further away from λe. It can also be shown that Γlk = Al for the
two contributing transitions (detailed in Chapter 4). Then, calculating the same factors
(Al/∆lk)2 for the above two transitions, we obtain∼3×10−14 and∼4×10−20 for the 1S0-
1P1 and 1S0-3P1 transitions, respectively. The results show that we can safely assume that
most scattering results from the 1S0-1P1 transition, and its associated (ΓlkAl/∆lk)2 factor
is about two orders of magnitude smaller than that for the case of rubidium. Combining
our previous result of the intensity I(r, z) comparison result, since Γsc ∝ Im[α(ω)]I(r, z),
we conclude that g has roughly an order of magnitude longer lifetime than g′ when the
two are trapped in optical traps of the same depth generated at the tune-out wavelength
of their respective excited states.

Now, let us consider the reverse scenario: the excited state is trapped by the trap gen-
erated at the tune-out wavelength of the ground state. In this case, the g′ tune-out wave-
length (λg′) lies at 790 nm, and Re[α(ωg′)] of e′ is ∼6000 a.u.. Since the transitions that
contribute to Im[α(ωg′)] of e′ are the same as those of g′ and also λg′ ∼ λe′ , (Γlk/∆lk)2

of the D1 and D2 transitions are of the same order as in the above case: 1.5 × 10−12

and 6× 10−12 from the D1 and D2, respectively. In contrast, the situation changes quite
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dramatically for 88Sr. Here, the g tune-out wavelength (λg) lies at 689.2 nm, ∼50 nm
away from λe, and e has Re[α(ωg)] of ∼1500 a.u.. Moreover, the transitions that con-
tribute to Im[α(ωg)] of e are very different from those for Im[α(ωe)] of g. In particular,
α(ωg) of e is mostly dominated (87%) [40] by the 3P0-3S1 transition; thus, we will con-
sider only this transition to estimate the scattering. The 3S1 state has a total linewidth of
2π×10 MHz and has a partial decay rate to 3P0 of 2π×1.5 MHz. Therefore, Im[α(ω)] ∝
Γ3S1−3P0A3S1/∆2

3S1−3P0
∼ 1 × 10−12. Here, one can see that the lifetimes of e and e′ are

of a similar order. Therefore, we cannot neglect the relative transition factors we have
neglected for the case of rubidium. After properly including these factors, the comparison
reveals approximately a factor of two longer lifetime for e than e′ at the same trap depth.

Considering a case that uses both independent state-dependent lattices at λg and λe,
using the strontium clock states is again advantageous compared to the hyperfine states
of a rubidium atom. To see this, we want to look at the scattering rate of g′ (g) in the
presence of the trap generated at λ′g (λg). Although g′ (g) experiences Vdip = 0 at this
wavelength, Γsc 6= 0 for a multi-level atom. As before, the trap for strontium clock states
is four time more intense than that of rubidium because Re[α] is four times smaller for e
at λg than e′ at λg′ . However, it can be calculated that (Al/∆lk)2 is about two orders of
magnitude smaller for g than for g′, providing a much longer lifetime of g in the presence
of the trap at λg than that of g′ in the presence of the trap at λ′g. A similar calculation
can be done for the opposite case: e′ (e) in the presence of the trap generated at λ′e (λe).
Although we skip this calculation here, the result will again show the advantages of stron-
tium.

In addition, it should also be noted that making state-dependent lattices with rubidium
involves using circularly polarized light and magnetically sensitive states. Therefore, the
traps will be sensitive to both stray magnetic fields and laser polarization drifts. In con-
trast, the traps for 88Sr can be made with linear polarization, and since the clock states
have J = 0, the states will be insensitive to magnetic fields.

In this Section, we considered the case when the laser’s frequency spectrum lies ex-
actly at the desired tune-out wavelengths without any background light. However, in
reality, a laser beam’s spectral background, due to its amplified spontaneous emission
(ASE), can extend over a large wavelength range of several nm. Although we have shown
that strontium clock states feature longer lifetimes compared to rubidium atoms, since
λg is only 150 GHz detuned from the 1S0-3P0 transition, even very weak ASE light near
the transition can cause uncontrolled heating of g. Therefore, despite the advantages,
implementation of high-fidelity state-dependent lattices still requires careful technical
consideration. In Section 2.5 and Chapter 4, we present a method to combat this prob-
lem.
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2.4 Clock spectroscopy in magic lattices

Thus far, we have demonstrated how to create optical lattice potentials under various
conditions such as magic, tune-out, and anti-magic. Now, let us briefly discuss the energy
spectrum of trapped atoms in an optical lattice, and the absorption spectrum of the clock
states. For simplicity, we consider only the spectrum in the magic lattices and will extend
this spectrum to non-magic lattices in Chapter 5. Understanding this absorption spectrum
is important because it provides a lattice trap frequency and sample temperatures [85,
86], and constitutes the basic working principle of the lattice cooling technique called
sideband cooling [70, 87], which can cool atoms to the motional ground state.
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Figure 2.5 Clock sideband spectrum in a 1D lattice.

In the case where the atoms are trapped in deep optical lattices, where tunneling along
the lattice is suppressed, the absorption spectrum resembles the spectrum of a harmon-
ically trapped ion [73, 87], and a trapped atom occupies a discrete vibrational state n.
Assuming an infinitely flat 1D lattice without any radial confinement and considering
the quartic distortion by the sinusoidal lattice potential, the vibrational energy spectrum
is [73]

En/h = νt(n+ 1/2)− νrec
2 (n2 + n+ 1), (2.24)

where νt is a lattice trap frequency and νrec is the recoil frequency, νrec = ~k2/2m. Here,
k is the wave-vector of a lattice and m is the mass of the atom. With this expression, we
can explain all the spectral transitions observed in atoms trapped in a deep lattice.

A typical spectrum consists of three different types of transitions: carrier transitions
that maintain the vibrational state, and red and blue sideband transitions that respec-
tively remove and add a motional quantum. In a magic wavelength lattice, the transition
frequencies of all carrier transitions are degenerate because the g and e lattices have
the same trap frequencies, i.e Een/h − Egn/h = 0 for all n where Ekn is the energy of a
state k in a vibration state n. From Eqn. (2.24), it can also be calculated that the first
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red and blue sideband transitions are detuned from the carrier by ωt − ωrec. Since the
power-broadened linewidth of the carrier is∼ 2π×kHz� ωt, the sideband transitions are
well-resolved from the carrier. Typically, the sideband transitions are highly suppressed
compared to the carrier transitions, by a suppression factor that depends on the Lamb-
Dicke parameter [87] η. The Lamb-Dicke parameter is characterized by the ratio of probe
light recoil frequency to the lattice trap frequency,

√
ωprec/ωt, and describes how tightly

the atom is bound compared to the probing wavelength. For all the applications described
in this thesis, we work at the Lamb-Dicke regime, η � 1: the internal states are tightly
bound to the lattice. Therefore, the probing light does not change the motional state,
and any transitions that change the motional quantum by more than one are highly sup-
pressed. The detailed derivations of the associated Rabi frequencies of all three types of
transitions are available from Refs. [73, 86].

An example of the sideband spectrum in a 1D lattice that features all the three types
of transitions is shown in Fig. 2.5. In the figure, one can see that all three transitions
are well resolved, and the sideband amplitudes are suppressed compared to the carrier.
Moreover, the relative amplitudes of blue and red sidebands can provide the temper-
ature of the sample [73]. For instance, the red sideband in the figure is suppressed
compared to the blue sideband due to a large ground vibrational state population. We
see that the red and blue sideband peaks are smeared toward the carrier, due to two
main reasons. First of all, the sideband transitions are non-degenerate, unlike the car-
rier transitions. For instance, the frequency of the blue sideband transitions are given
by Een+1/h − Egn/h = ωt − ωrec(3n + 2)/2; thus, the higher blue transitions lie closer
to the carrier. Since each peak’s amplitude is dependent on both the level population
that is Boltzmann distributed and its respective Rabi frequency, we observe that the side-
band peak amplitude exponentially reduces closer to the carrier. Second, these multiple
sideband peaks are not resolved; instead, they smear, because of the coupling between
the radial and longitudinal motional states that we have neglected in Eqn. (2.24) [73].
In Chapter 5, we extend this discussion to 2D non-magic lattices and observe resolved
non-degenerate carrier and blue-sideband transitions. Furthermore, we use the clock
states’ spectroscopic features in the 2D non-magic lattices to locally measure the sample
temperature and to characterize our cavity-enhanced optical lattices.

2.5 Increasing the size of optical lattices

In Section 2.1, we have shown how to create an infinitely extended 1D optical lattice by
considering a plane wave. However, since a more realistic model for a laser beam is a
TEM00 mode with a Gaussian intensity profile, the lattice sites are no longer identical on
length scales that are comparable to the finite transverse extent of the beams because the
potential depth of the lattice varies. For this reason, the system sizes that can be simu-
lated on quantum simulators are limited by the number of identical lattice sites that can
be used.
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Figure 2.6 Fermionic atoms in an optical lattice. (a) Ultracold fermionic atoms trapped in in-
finitely extended optical lattices of depth V can tunnel between sties at rate t. Two
fermions of opposite spin on the same site interact with interaction energy U . (b)
Finite-sized optical lattices vary quadratically in depth causing a site-dependent energy
offset ∆E, typically referred as harmonic confinement or a lattice envelope.

In quantum simulators, the depth variation in the optical lattice potential leads to
spatial variation of the tunneling rate, the interaction parameters, and the chemical po-
tential. Therefore, descriptions of such quantum systems must rely on local-density ap-
proximations [88] and take into account edge effects that can become more important
than those in the bulk system. The inhomogeneity also limits the size of a potential Mott
insulator [88], in which each lattice site is occupied by a single atom. This limit, in turn,
restricts the size of quantum simulations, which are often initialized in a Mott insulating
state. The fidelity of such simulations is then limited by the finite size and the imperfec-
tions of the initial Mott insulator.

Although our main interest is building a quantum simulator, the system size limitation
due to harmonic confinement also hinders other lattice-based quantum technologies, the
most prominent example being optical lattice clocks. One fundamental limit to optical
lattice clocks’ stability is the quantum projection noise, which scales as∝ 1/

√
N , whereN

is the number of atoms. In one-dimensional (1D) optical lattice clocks (the most common
type), increasing the atom number leads to interaction-induced frequency shifts [89–91],
which lower the clock accuracy. These shifts can be reduced by using 2D [92] or 3D lat-
tices [93, 94], in which case the atom number is limited by themode area or mode volume
of the optical lattices, respectively. Here, the mode area (volume) refers to the transverse
area created by the two (three) orthogonal beams that create the lattices, which is di-
rectly proportional to the number of usable lattice sites. Moreover, this system-size limit
would also ultimately hinder implementing large-scale quantum computations consisting
of tens of thousands of qubits.
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2.5.1 Example of the system size: Mott insulator size

Let us provide a concrete example of how harmonic confinement limits the achievable
system size. For this discussion, we focus on the application for quantum simulations.
However, a similar calculation can be performed for other applications by considering an
appropriate starting state of the particular application in interest to show the system size
limitation due to the harmonic confinement.

One of the most common initial states for quantum simulations is a Mott insulator, a
low entropy initial state in which a single atom occupies each lattice site. Since this is the
starting state, the achievable Mott insulator size determines the size and thus the com-
plexity of the simulation. In this Section, we show how this Mott insulator size depends
on the waists of the beams that create the optical lattices.

The most important energy scales of quantum simulation in optical lattices are t and
U , which respectively characterize the tunneling of atoms between neighboring sites and
the interaction energy between two atoms on the same site as shown in Fig. 2.6(a). In
two dimensions, a fermionic spin-1/2 Mott-insulator forms when the interaction energy
U is approximately the same as the ground bandwidth 8t [14], filling each lattice site
with exactly one atom.

However, since the lattice is not perfectly flat, there is an additional site-specific energy
offset ∆E as shown in Fig. 2.6(b). This offset leads to an additional constraint, ∆E < U ,
which limits the size of the Mott insulator. To estimate the system size, we first estimate
at which lattice depth the constraint U = 8t is satisfied [14]. Following Ref. [88],

U =
√

8/πkaErec(V/Erec)3/4, (2.25)

t ∼ 4√
π
Erec

(
V

Erec

)3/4
exp

[
− 2

(
V

Erec

)1/2]
, (2.26)

where k = 2π/λ and a are the wave-vector and the scattering length, respectively. The
lattice potential can be approximated as

V (x1, x2) ∼ V [e−2x2
1/w

2
cos2(kx1) + e−2x2

2/w
2
cos2(kx2)]. (2.27)

Using the expressions above, a Mott insulator forms when V = Erec[ln(8
√

2/ka)]2/4. Let
us consider the fermionic isotope 87Sr which has a = 96a0, where a0 is the Bohr radius,
and a nuclear spin I = 9/2. When using nuclear-spin-polarized atoms in a mixture of
|g,mI = ±9/2〉 in optical lattices created at a wavelength of 914 nm, the transition to a
Mott insulator is expected to occur at V ∼ 8Erec. At this depth, the interaction energy
U is ∼728 Hz. We can compare this energy U with the site-specific ∆E to estimate the
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size of the Mott insulator. The site-specific energy ∆E scales with the harmonic confine-
ment of the lattice, Mω2r2/2 where r2 = x2

1 + x2
2 and ω =

√
4V/Mw2 is the radial trap

frequency. Here,M is the mass of a 87Sr atom, and w is the 1/e2 waist of the beams that
create the lattices.

Setting ∆E = U , we find the radius of the Mott insulator rMott = w
√
U/2V . Consid-

ering the waist of our cavity modes w = 489(8) µm, we expect a radius of ∼60 µm. The
area defined by this radius corresponds to the region where the lattice depth is within
96 − 97% of the maximum. The total atom number in this region Natoms = πr2/(λ/2)2

which is 4×104 to 11×104 depending on the wavelength, which ranges from 1064 to
689 nm. Performing the same estimates using a waist of 80 µm as used in Ref. [53], we
obtain an atom number ranging from 1×103 to 3×103 for the same wavelength range.

2.5.2 Cavity-enhanced optical lattices

Any optical lattice experiment faces a trade-off between system size and lattice depth,
given by the beam waist and intensity, respectively. Therefore, limited laser power leads
to a technical limit on the system size. A natural candidate for increasing laser intensities
is an optical cavity (or resonator). In a cavity, light circulating between mirrors construc-
tively interferes with incoming light, thus enhancing the laser power circulating within
the cavity. Since this enhancement factor depends on the mirror reflectivities, whereas a
cavity-mode waist depends on the mirrors’ radii of curvature, a cavity provides indepen-
dent control over the circulating power and waist. This capability lets us achieve deep and
large (and thus homogeneous) lattices simultaneously. Other approaches to improving
lattice homogeneity use beam shaping via cylindrical lenses [95] or spatial light modu-
lators [96]. However, these approaches face laser power limitations much earlier than
power-enhancing buildup cavities do.

This cavity-based solution can be applied at any desired wavelength by optimizing the
cavity mirror coatings to achieve the desired intra-cavity amplification factor. Therefore,
this solution opens new possibilities to create large and deep lattices at wavelengths,
even those where the laser powers are limited. In particular, this feature is necessary for
implementations of state-dependent lattices for strontium since both λg (689.2 nm) and
λe=633 nm occur at wavelengths where the laser power is limited.

Creating state-dependent lattices for strontium in a cavity can also enhance the atomic
lifetimes. In previous sections, we have seen that the tune-out wavelength of g lies at
−150 GHz away from the narrow 1S0-3P1 transition, and many applications require us-
ing both clock states in state-dependent lattices. Therefore, a tune-out laser beam that
has any amplified spontaneous emission (ASE) background present at the narrow 1S0-3P1
transition frequency will heat g, and thus, shorten its lifetime. In Chapter 4, we partly
solved this problem using a holographic grating to filter out part of the tune-out laser’s
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background spectrum. However, this filtering happens naturally for a beam generated in-
side the cavity because cavity transmits a laser beam only when the cavity length matches
the integer of a half wavelength of the laser beam. Therefore, the ASE background will
be highly suppressed for a beam created in a cavity compared to free space beams.

Despite the obvious advantages of the cavity-enhanced optical lattices, implementing
them in experiments brings technical challenges. While using one-dimensional cavity-
enhanced optical lattices for atomic clocks has seen some success [97], implementation
in two dimensions is more difficult due to precise requirements on the vertical overlap
of orthogonal modes. Moreover, this overlap should be maintained not only during the
experimental cycles, but also during the bake-out process of the vacuum chamber where
the chamber is typically heated up to ∼200 ◦C. In addition to the overlap difficulties,
past attempts have suffered from short lifetimes due to poor vacuum conditions [93] or
increased lattice intensity noise due to the frequency-to-intensity noise conversion that
occurs when a laser’s frequency is stabilized to the resonance of a cavity [97].

In Chapter 5, we discuss our crossed cavity design and its implementation in an ex-
periment that circumvents all the aforementioned stability problems. This success has
been achieved by the careful construction of ultra-high-vacuum-compatible and mono-
lithic crossed cavities with a near-perfect vertical overlap. The cavity mirror coatings
have been optimized for creating different types of optical lattices for strontium. We ex-
perimentally demonstrate that there are no disadvantages of our approach in terms of
atomic lifetimes compared to free space optical lattices, and that it also allows the cre-
ation of deep and large optical lattices at wavelengths where the available laser power is
limited.

2.6 Quantum gas microscopes

In early experiments, the main method for obtaining information from quantum gases
was limited to observation in momentum space, which was done by releasing atoms from
the trap and taking a snapshot of their density distribution via absorption imaging. How-
ever, the relatively recent development of quantum gas microscopes [74, 75] has ex-
tended researchers’ measurement capability to real space where a single lattice site can
be resolved, allowing direct measurements of density and spin correlations. In our exper-
iments, we also plan to implement the same technique to image and address individual
lattice sites. These capabilities are crucial for future applications of our machine, de-
scribed in detail in the next section (Section. 2.7).

Our microscope will use operating principles similar to the ones already developed and
implemented for ytterbium [98] due to the similarity in electronic structure between the
two species. To date, strontium quantum gas microscopes have not been employed in
experiments, yet we plan to incorporate one soon in our work. We next briefly outline
the planned working principle of the microscope.
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A high imaging resolution will be achieved with λimage=461 nm light for fluorescence
detection on the 1S0-1P1 transition. To prevent atom losses due to heating, we will si-
multaneously cool the atoms on the narrow-line transition 1S0-3P1 at 689 nm with direct
sideband cooling, a technique allowed by the resolved sideband spectrum discussed in
Section 2.4. To capture the fluorescence light to reconstruct the density distribution,
a high resolution objective with a numerical aperture (NA) of 0.7 will be used. With
this objective, we will achieve a diffraction-limited resolution of λimage/(2NA) ≈ 330 nm,
enabling site-resolved imaging of the 345-nm-spaced lattice sites created close to the
689.2 nm tuneout wavelength.

The high resolution imaging system will also be used for single-site addressing by first
shaping the beam with a spatial light modulator. Since the addressing beam is tuned to
the clock transition at 698 nm (λclk), a dichoricmirror will be used to couple the clock laser
light through the objective. Here, the diffraction limited resolution is λclock/(2NA) ≈
490 nm, larger than the lattice spacing. Therefore, there is some risk associated with the
experimentally achievable addressing resolution. However, magnetic field gradients can
be used to further increase the resolution.

2.7 Applications

We have presented our setup’s ability to generate completely state-dependent lattices
with long atomic storage times, to image and address atoms in a single site resolution
using a high-resolution microscope, and to create cavity-enhanced lattices that produce
an order of magnitude larger optical lattices than the current state-of-the-art, even at
wavelengths where the laser power is limited. In this section, we present two main future
directions for the experiments, made possible by combining the above tools.

2.7.1 Quantum simulation of light-matter interfaces

So far, using a semi-classical approach, we have discussed the interactions between indi-
vidual atoms and a light field with a large mode volume, placed in a vacuum. In contrast,
here we are interested in studying a light field strongly interacting with an atom, a regime
that can be achieved by enhancing the field amplitude by confining the light in a tight vol-
ume (E0 ∼ V −1/2). The classical example is cavity quantum electrodynamics, whereby
an atom is stored in a tightly focused and powerful light field that is created in an optical
cavity (note that such a cavity operates in a contrasting way, unlike our build-up cavity
discussed in Section 2.5 where the goal was to achieve the largest mode volume, and
thus generate a large confining potential). In such systems, both atom and light field
need to be treated quantum mechanically, enabling observations that are unseen in semi-
classical scenarios such as vacuum-Rabi splitting and modified spontaneous emissions.
However, the tight focus of light is diffraction limited in a vacuum to V ∼ λ3; thus, this
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limitation has led to the development of the field of nanophotonics, wherein photons are
confined within subwavelength nanostructures to surpass the diffraction limit. Moreover,
these synthetic structures allow engineering photonic band structures, which researchers
achieve bymanufacturing specific geometries and periodicities of the light-guiding nanos-
tructures. Numerous efforts over the last decade have been make to trap neutral atoms
in the vicinity of these nanostructures and thus realize strongly coupled light-matter in-
terfaces that support rich physics such as chiral quantum optics, sub/superradiant states,
and directional emissions.

However, reaching strong coupling regimes requires placing the atomswithin the evanes-
cent fields of the structures at distances below 100 nm. Therefore, stable trapping of
atoms at such distances difficult even in 1D–because of surface forces that modify both
trapping conditions and the atomic emission properties, thus extending such systems to
2D is even more difficult. In addition, the degree of control over the system parameters
in nanophotonic systems is limited. Therefore, considerable attention is now being paid
to simulating these phenomena using ultracold atoms, making atoms behave as photons
do. These analog simulators based on ultracold atoms in optical lattices can simulate
strongly coupled light-matter interfaces that are challenging or impossible to realize in
real systems. Ultimately, these simulations can provide novel quantum matter that can
be synthetically generated by engineering the long-range interactions between atoms,
mediated by the atoms that mimic travelling photons.

Here, we are considering a nanophotonic system wherein two-level atoms, which we
will call quantum emitters to distinguish them from the strontium clock states, are cou-
pled strongly to a single band of a photonic bath. We next explain how the Hamiltonian of
this nanophotonic system can be mapped to our analog simulator that uses the strontium
clocks states in a state-dependent lattice created at a wavelength of λg. In our simulator,
g is trapped in a shallow lattice, and therefore tunnels freely within the lattice, whereas e
is tightly trapped as shown in Fig. 2.7(a). Then, a clock laser light focused to a particular
lattice site can continuously drive coupling between g and e, with a coupling strength
given by the Rabi frequency Ω. Multiple such clock laser lights can be added to address
multiple lattice sites (Fig. 2.7(a)). In this case, 3P0 tightly trapped in a lattice site with the
clock laser light shining directly on it acts as an emitter in the excited state (Fig. 2.7(b)
left), which can emit a bath particle. In this quantum simulation, a bath particle corre-
sponds to an atom in 1S0 in the shallow lattice (Fig. 2.7(b) middle). On the other hand,
an empty lattice site with the clock laser light shining on it maps to an emitter in the
ground state (Fig. 2.7(b) right), and can absorb a bath particle. This phenomenon would
correspond to tunneling 1S0 arriving at this site and getting excited to 3P0 by the clock
laser light.

To make an analogy with the band structures of nanophotonic systems, we also need to
look at the resulting band structure of the state-dependent lattice. The dispersion relation
of a 1D lattice using tight-binding approximation, allowing hopping only to neighboring
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Figure 2.7 Simulation of nanophotonic physics (adapted from Ref. [82]). (a) Strontium clock
states in a state-dependent lattice at a wavelength of λg. The ground state g (blue cir-
cle) tunnels in a shallow lattice, and the excited state e (red circle) is pinned in a deep
lattice. The clock laser lights (vertical arrow) that selectively shine on a single lattice
site couple g and e with a coupling strength Ω. (b) Mapping of quantum emitters cou-
pled to a photonic bath to strontium clock states trapped in a state-dependent lattice.
(c) Energy band structure of g (blue) and e (red) in the state-dependent lattice. The
two bands are coupled by the clock laser light. By changing the detuning of the clock
laser ∆, one can choose into which part of the band structure the quantum emitter will
emit. Moreover, the g band structure is resolved when Ω�W .
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lattice sites, is given by E(q) = −2Jcos(q), where q ∈ [−~k, ~k) is the quasimomentum
with a wavevector k of the lattice, andW = 4J is the bandwidth. Here, q is analogous to
the momentum p and can be perceived as associated with the kinetic energy of an atom
in the lattice. The derivation of the dispersion relation will not be discussed in this thesis
but can be found in many textbooks, in particular, in Ref [99, 100]. For the excited state e
that is trapped in the deep lattice, the band is flat since J ∼ 0 (W ∼ 0), whereas the band
structure of g in the shallow lattice features the cosine structure. This difference between
the two band structures is illustrated in Fig. 2.7(c). The non-flat band structure of the
shallow g lattice is what is similar to the band structure of nanostructures such as pho-
tonic crystals. The two bands, g and e, can be coupled by the clock laser light at detuning
∆, i.e., an emitter coupled to a single band of the bath. The detuning ∆ determines at
which part of the band structure they couple (Fig. 2.7(c)) and thus also determine where
in the band the emission will take place. Therefore, when Ω�W , the bath’s band struc-
ture can be resolved by tuning ∆. In addition, W and Ω can be tuned independently
by changing the lattice depth and clock laser’s intensity, respectively, to enter different
coupling regimes. In particular, the strong coupling regime occurs atW ∼ Ω. Therefore,
the ease of tuning ∆,W , and Ω in ultracold atom quantum simulators allow explorations
of various parameter regimes.

The above simulations can be realized using either bosonic and fermionic isotopes, and
the different isotopes of strontium enable a choice of bath interactions (Table 2.1). In par-
ticular, 88Sr, with an almost vanishing scattering length of -2 a0, can be used to realize a
non-interacting bath particle that is the case most analogous case to photons that do not
interact. Implementation using 87Sr might require care so that Pauli’s exclusion does not
perturb the tunneling dynamics. This concern can partly be solved by having an equal
population of the 10 different spin states of 87Sr to reduce the probability of finding a
bath particle with the same spin state at adjacent lattice sites.

Such simulations of nanophotonic physics have just begun, and the first demonstrations
were performed using a rubidium-based quantum simulator in one dimension [19, 20,
101]. Our simulator using strontium atoms in a 2D state-dependent lattice with single-
site imaging will expand the scope of what has been possible using a rubidium-based
quantum simulator. It will allow observations of richer physics, enabled by the higher
dimensionality of the lattices, and will feature higher fidelity quantum simulations that
are enabled by both longer atomic lifetimes and single-site addressing and detection tech-
niques. Moreover, our large cavity-enhanced lattices that extend more than 300 ×300
lattice sites will reduce particle reflections at the boundary that can hamper the direc-
tional emission patterns expected in such systems [32].

2.7.2 Collisional phase gates

There have been various proposals for quantum information processing that either use the
nuclear states or electronic clock states of strontium as qubits, or even a hybrid scheme
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Figure 2.8 Collisional phase gates using strontium in state-dependent optical traps. (a) Qubits
(|0〉 and |1〉) are realized using the nuclear spin states of 1S0 and are stored in a stor-
age lattice created at λe. Then, the qubits are moved to an independent transport
lattice created at λg for gate operation between distant qubits. They can also be ad-
dressed individually by coupling to 3P2, a level that is shifted by a magnetic field gradi-
ent (the figure is from Ref. [21]) (b) An alternative scheme to achieve collisional phase
gates without having a transport lattice. Here, optical tweezers at λg and λclk are used
to excite an atom to e and move them across a layer of g atoms.

that combines both nuclear spin and electronic degrees of freedom. Among these pro-
posals, here, we briefly introduce the proposal of Ref. [21] which uses two nuclear states
of 1S0 of 87Sr as qubits and performs an entangling gate via the electronic clock states in
state-dependent lattices.

In this proposal, taking advantage of decoupling of the nuclear spin and the electronic
state, qubits |0〉 and |1〉 are encoded in nuclear spin states mI : |0〉 ≡

∣∣1S0,mI = −9/2
〉

and |1〉 ≡
∣∣1S0,mI = −7/2

〉
. The atoms are subjected to two optical lattices operating

at the e tune-out wavelength (λe =633 nm), forming a storage lattice, and at the g tune-
out wavelength (λg =689.2 nm), forming a transport lattice. At these wavelengths, the
storage lattice traps only 1S0, and the transport lattice traps only 3P0, as illustrated in
Fig. 2.8(a). Here, the qubits are initialized and stored in the storage lattice. Then, one or
many qubits can be excited to 3P0 by a clock laser light in parallel to perform entangling
gates. Once they are excited, they get trapped in the transport lattice, not in the storage
lattice. Then, the lattice can be transported in a well-controlled way by introducing a fre-
quency difference between the two counter-propagating beams that make up the lattice.
Once the atoms are moved over by a fixed lattice site, the atoms in 3P0 can interact with
1S0 in the storage lattice via the on-site interaction, and this interaction can be used to
implement a phase gate. Such type of gates that use on-site interaction are called colli-
sional phase gates. The proposed way to achieve single-site addressing for read-out and
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gate operations uses 3P2, the state that is more sensitive to a magnetic field compared to
the clock states, in the presence of a large external magnetic field gradient that shifts the
energy spatially (Fig. 2.8(a)).

In our experiment, we cannot move the lattices since their frequency is stabilized to
the build-up cavity’s resonance frequency. Nevertheless, we can employ an alternative
approach: combine laser beams at wavelengths of λg and clock transition (λclk=698 nm)
and send them through a quantum gas microscope to tightly focus these beams onto a
single lattice site (i.e., optical tweezer). This idea is sketched in Fig. 2.8(b). Then, these
focused beams can be multiplexed to shine on multiple lattice sites and also moved by
using a spatial light modulator or acousto-optic deflector. In this way, the setup can excite
g at the particular lattice sites to e atoms, and then, subsequently, move e atoms through
the layer of g atoms, enabling the implementation of entangling gates.
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Chapter 3

Production of ultracold strontium clouds

In the beginning of this thesis work, the project started in a laboratory with only empty
optical tables present. Now, this laboratory has developed into a crowded place with a
fully assembled vacuum chamber and the tables equipped with multiple laser systems
necessary to cool, trap, and manipulate strontium atoms, as illustrated in Fig. 3.1. As
we plan for the world’s largest optical lattice quantum simulator, at which lattices extend
up to ∼300 × 300 sites, significant efforts have gone into building an apparatus with a
fast cycle time and large numbers of atoms. This chapter contains information about
the first part of our experimental setup and sequence used to produce a ∼1 µK-cold
atomic cloud of 87Sr and 88Sr, which is the first essential step towards realizing all the
interesting applications of our machine discussed in the previous chapter. We provide an
overview of the vacuum system (Section 3.1), laser systems (Section 3.2), and optome-
chanics around the chamber (Section 3.3). Then, we describe our magneto-optical traps
(MOT) (Section 3.4, 3.5, and 3.6); in particular, we discuss our improved narrow-line
Red MOT technique in detail. This technique is based on adiabatic passage and provides
a robust and quick pathway to creating ultracold strontium clouds with large numbers of
atom number (Section 3.5).

3.1 Setup overview & vacuum system

Our experiment begins with producing a hot and high-velocity beam of strontium vapour
from an oven, which subsequently gets localized and laser-cooled in MOTs. Then, the
laser-cooled atoms are optically transported to be trapped in the cavity-enhanced optical
lattices, where quantum simulation and high-resolution detection will take place. The
vacuum chamber is L-shaped, as shown in Fig. 3.2, and can be conceptually divided into
two parts: the preparation part for loading and production of ultracold samples and the
science part for performing high-quality measurements and quantum simulations. The
first part consists of an oven, transverse cooling, Zeeman slower and a main chamber
where we create magneto-optical traps (MOT) for strontium atoms. The second part
largely consists of another stainless steel chamber called the science chamber, where the
crossed cavities are mounted. A vacuum chamber consisting of two different chambers,
one for MOTs and the other for quantum simulations, is a common design choice in
ultracold experiments, due to the limited space for placing optics; however, for us, this
design was particularly important for the build-up cavity assembly. We wanted to avoid
the atomic beam hitting the cavity assembly, which may cause possible deposition of
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Figure 3.1 Overview of the lab space, showing a schematic of the vacuum system, all the laser
systems used in this thesis, and the lab-frame. The abbreviations MC, SC, and Ti-sapp
refer to the main chamber, science chamber, and Ti-sapphire laser, respectively.
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strontium that could degrade cavity mirror coatings. In this chapter, we focus only on the
first part, and the second part of the apparatus will be discussed in depth in Chapter 5. As
the construction of the first part has been performed jointly with another PhD researcher
who has already published his thesis [55], we will keep the summary brief as the details
can be found in Ref. [55] and instead, focus on those that have not been discussed.

Oven

The experiment starts with hot strontium gas leaving the oven at high velocity. The
higher the oven temperature, the higher the atomic flux is. For our machine, raising the
temperature by 50 ◦C increases the atomic flux in the main chamber by a factor of 3.
However, higher flux also reduces the oven’s lifetime, leading to a hard trade-off between
the two. To give a rough scaling for our machine, we find that loading the oven with
∼3 g of strontium has a lifetime of two years and ∼4 months when we run the oven at
500 ◦C and 600 ◦C, respectively (assuming that the oven is running continuously every
day). We heat up the oven to 500 ◦C or 550 ◦C for 88Sr and 87Sr, respectively. The higher
operating temperature for 87Sr compared to 88Sr is not enough to compensate for the
lower natural abundance of 87Sr, which is about a factor of 10 lower than 88Sr. However,
we find that this increase is a good compromise between higher flux and the oven lifetime.

For the reasons we discussed above, an atomic beam oven sets a hard limit on achiev-
able atomic flux for any quantum gas experiment, particularly for those atomic species
with high melting points like strontium, erbium, and dysprosium. Although construct-
ing an oven from scratch is doable, but for the species mentioned above, many research
groups rely on commercial ovens from companies such as AOSense and CREATEC because
developing a high flux atomic source is challenging. We are currently using an oven from
CREATEC; however, because the oven was originally designed for molecular beam epi-
taxy, several features are not ideal for quantum gas experiments. For this reason, our lab
has been developing a high-flux atomic beam source for future upgrades. The details are
available from the Master’s theses [102, 103].

First stage differential pumping tube

Due to the high temperature of the oven section, the pressure in the oven is relatively high
(∼10−8 at 500 ◦C). Therefore, we install a differential pump tube after the oven section
to prevent any contaminants from the oven section from affecting the main chamber. The
tube is 120 mm long with a diameter of 5 mm, providing an order of magnitude lower
pressure.

Transverse cooling

We mentioned that a high atomic flux is important, but another crucial property is the
collimation of an atomic beam. A highly diverging atomic beam with a small overlap with
a counter-propagating laser beam that slows down the atoms is useless for cold atom
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Figure 3.2 Overview of the vacuum system (modified from [55])

experiments. Therefore, to better collimate the hot atomic beam, we perform optical
molasses in two orthogonal directions to reduce the atomic beam’s transverse velocities.
The cooling beam for each direction has a beam diameter of ∼4 mm, and it crosses the
atomic beam transversely several times. This beam path is achieved by retro-reflecting
the cooling beam several times at a small angle between the two mirrors. The traverse
cooling region improves the atomic flux by a factor of 2∼3 for both 88Sr and 87Sr.

Zeeman Slower and second differential pumping tube

Our Zeeman slower section is about∼40 cm long and has a configurable bitter-coil design.
The magnetic coils are assembled surrounding two separate vacuum nipples, and one of
the nipples has inner dimensions that are the same as the first differential pumping tube,
thus acting as a second differential pumping stage. Therefore, this stage once further
reduces the pressure. The slower section is designed to slow down the atoms to the
capture velocity of the blue MOT, which is ∼30 m/s. The laser light for the slower beam
comes from the injection-locked blue diode from Nichia, that will be described further in
the section describing the laser system (Section 3.2). We find that most of the slowing is
done by the light, and the magnetic field has only a little influence. Having a magnetic
field improves the flux only by ∼10%.

Main chamber

In this chamber, the slowed atoms are captured and laser-cooled down to a few µK via
the two stages of MOT. The first stage uses the broad 1S0- 1P1 transition to cool the atoms
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to ∼1 mK, and the subsequent step uses the narrow 1S0- 3P1 transition to cool to a few
µK. In this chamber, we measure a pressure of 2× 10−10 mbar using a hot-wire vacuum
gauge, and the atomic lifetime of 50 s in the 3P2 magnetic trap. The details about the
MOT setup is explained later in Section 3.4 and 3.5.

3.2 Laser Systems

The laser systems are distributed across three optical tables as already shown in Fig. 3.1,
and the laser beams arrive to the vacuum system via optical fibers if the corresponding
laser systems are not on the vacuum table. Every laser setup is built on a separate bread-
board with side and top enclosures. In this way, we can rearrange the setups easily when
necessary, and the optics are protected from dust.

The laser systems necessary for laser-cooling strontium are 461 nm, 689 nm, 679 nm,
and 707 nm laser sources with the first two required for MOTs and the latter two required
to optically repump the atoms back to 1S0. The cooling steps will be discussed in detail
later in Section 3.4 and 3.5. Before the laser beams are delivered to the vacuum chamber
and are sent to interact with strontium atoms, the laser beams first need to be prepared
with correct detuning and power, and most of these initial preparations are done on the
laser table.

In general, many cold atom experiments face difficulty due to limited laser beam power
and laboratory space compared to the space needed for the laser systems. Moreover, it
is often the case that the laser system needs to be extended as an experiment develops
further. For this reason, we have designedmost of the laser systems to be scalable in power
using compact custom-built injection lock modules. A typical laser set-up starts with a
master laser whose frequency is stabilized to a stable reference cavity or a spectroscopy
cell. Split-off beams from the master laser can seed multiple injection lock modules to
amplify the beam power, and we find that little seed beam power is required, ∼2 mW.
Therefore, in this way, we can get more power by simply adding more injection lock
modules when necessary.

3.2.1 Blue laser system

The blue beam initiates the laser-cooling of strontium atoms using the broad 1S0-3P1
transition, and the laser setup is designed to address the 1S0-3P1 transition of all naturally
occurring isotopes. Moreover, the blue beams are also used as probe beams for absorption
imaging. A master laser, Toptica's DL Pro, is frequency stabilized to a spectroscopy cell
using a frequency modulation transfer technique [104]. The design of the spectroscopy
cell is adapted from Ref. [61]. We use acousto-optical modulators (AOMs) to tune the
frequency of the laser to lock to an isotope of interest. The master laser beam is split
into multiple beam paths for frequency stabilization to the spectroscopy cell, absorption
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imaging in the main and science chambers, and seeding multiple injection modules for
preparing the transverse cooling, Zeeman slower, and MOT beams. All the necessary
frequency shiftings of the beams is done using AOMs, and the detailed beam paths are
available in [55].

3.2.2 Red laser system

The red laser setup has a similar design as the blue laser setup in that it consists of a
master laser and a slave laser that is locked to the master laser’s frequency by injection
lock (although we initially used tapered amplifiers, as will be explained later). However,
one major difference is the laser’s frequency stabilization method. Compared to the blue
laser setup, the requirement on the laser’s frequency stability is far more stringent for
the red laser, since it is used to address the transition with a linewidth of only 7.4 kHz.
This linewidth is more than three orders of magnitude narrower than the blue transition
and also much narrower than a typical linewidth of free running external-cavity diode
lasers of ∼100 kHz; Therefore, the red master laser has to be frequency-tuned to drive
the correct atomic transition of strontium, but also the linewidth has to be reduced by
stabilizing its frequency to a resonance of an ultrastable high-finesse reference cavity.
The red laser setup consists of three major parts: the master laser, frequency stabilization
setup to the reference cavity, and slave laser.

Master laser setup

The main role of the master laser is to split off its power to generate the beam paths used
for different purposes, just as was done for the blue laser setup. Therefore, it is impor-
tant to stabilize the master laser’s frequency at the most convenient frequency that can
easily meet the frequency requirements of different beam paths. For this, let us first look
at what different beam paths are and discuss the laser’s locking frequency we chose to
satisfy all the frequency requirements of different beam paths.

The master laser, DL Pro from Toptica, outputs about 28 mW of power, and after beam
shaping with a pair of cylindrical lenses, its beam path is divided into five different paths
as shown in Fig. 3.3. First, we split off the beam to couple to a wavemeter to measure
the laser’s frequency (Path 1 in Fig. 3.3). With the wavemeter, we can set the frequency
of the master laser as close to the desired frequency within roughly a few hundred MHz.
The second split off is used to couple the light to the reference cavity to stabilize the
laser’s frequency to the cavity’s resonance frequency (Path 2 in Fig. 3.3). The third path
is dedicated to seed a slave laser by injection locking, and the seed laser is primarily used
for the red MOT beams (Path 3 in Fig. 3.3). Therefore, depending on whether the laser
is used to address 88Sr or 87Sr, one may want to tune the frequency appropriately before
seeding, rather than in the slave laser setup, to save the beam power.

Let us now discuss the target transition frequencies for the red MOT. To operate the
red MOT for 88Sr and 87Sr, we need the beams that address the 1S0-3P1 transition of 88Sr,
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Figure 3.3 Overview of the red master laser system. The beam path from the master laser, Top-
tica's DL Pro, is splitted into five paths: to a wavemeter (Path 1), to lock to the refer-
ence (Path 2), to seed an injection lock module (Path 3), to be used as a stirring laser
beam (Path 4), to beat with a femtosecond optical frequency comb (Path 5)

and 1S0 (F = 9/2)-3P1 (F ′ = 11/2) and 1S0 (F = 9/2)-3P1 (F ′ = 9/2) of 87Sr transitions
(Section 2.2), respectively. In Figure 2.2 in Section 2.2, we have shown the detunings
of the 1S0-3P1 hyperfine structures with respect to the state assuming I = 0; however,
here, the more useful numbers are the detunings from the 1S0-3P1 transition of 88Sr,
taking account the isotope shift of 62.1865(123) MHz [105], which is shown in Table 3.1.
As shown in the Table 3.1, the difference in 88Sr 1S0-3P1 and 87Sr 1S0 (F = 9/2)-3P1
(F ′ = 11/2) is more than 1 GHz. Although this gap can certainly be bridged using AOMs
or EOMs, instead, we change the locking frequency of the master laser depending on
the isotope of interest to ease bridging the gap. More explicitly, we use the fact that we
can lock the laser to the fundamental transverse mode (TEM00) of the reference cavity
at every free spectral range, which is 1.5 GHz in our case.

Isotope F ′ 1S0 → 1P1 (MHz) 1S0 → 3P1 (MHz)
88Sr 0 0

7/2 -9.7 1352.0
87Sr 9/2 -68.9 -221.7

11/2 -51.6 -1241.4

Table 3.1 The detuning from the 88Sr transitions to address the different hyperfine states of
87Sr [37].
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Frequency tuning to address the 1S0-3P1 transition of 88Sr For cooling 88Sr, we lock the
frequency of the laser 80 MHz above the 1S0-3P1 transition. The reason for the 80 MHz
offset is related to the later stage of the setup. In a nutshell, it allows us to have one
double-pass AOM (∼-2×80 MHz) for shifting the frequency of all three red MOT beams
and a single-pass AOM (×80 MHz) to individually shut off each red MOT beam.

To achieve this frequency stabilization, we first roughly put the laser to the transition
frequency by looking at the wavemeter and then, beat the laser with a femtosecond opti-
cal frequency comb to find out the absolute frequency (Path 5 in Fig. 3.3). Then, we find
the cavity resonance of the TEM00 mode that is as close to our desired frequency. Since
the cavity length is not tunable, and a free spectral range of the cavity is 1.5 GHz, the
maximum frequency tuning required to match the frequency of the atomic transition to
the cavity resonance is ±750 MHz. Therefore, ideally one should put an AOM in Path 2
in Fig. 3.3 to match the two frequencies. In fact, for our first-generation of the reference
cavity, we had to tune the beam’s frequency by ±625 MHz. However, for our second ver-
sion of the cavity, which is the one we are currently using, the required frequency tuning
range was small such that it can be done by shifting other AOMs in the later stage of
the setup by a few MHz. Therefore, the beam couples directly to the cavity without any
frequency shifters.

Once the master laser’s frequency is locked to the TEM00 using a Pound–Drever–Hall
(PDH) locking scheme, to deliver the the seed beam that is 80 MHz detuned from the
1S0-3P1 transition to the injection lock module, the mirror mounted on a removable flip-
mount in Path 3 shown in Fig. 3.3 to be removed to fiber-couple the light.

Frequency tuning to address the 1S0-3P1 hyperfine states of 87Sr For 87Sr, we lock the laser
to the resonance of the cavity’s TEM00 mode, but to the one that is a free spectral range
(∼1.5 GHz) below. In doing so, the master is laser is only −180 MHz detuned from the
1S0 (F = 9/2) and 3P1 (F ′ = 11/2) transition. We note that our strategy does not allow
simultaneous cooling of 88Sr and 87Sr, but reduces the numbers of AOMs necessary to
address the 87Sr MOT transition (or EOM can be used to shift the frequency as well). The
reduction of number of AOMs was particularly crucial during the early stages of our ex-
periment when we had to secure 10 mW of the beam power to seed a tampered amplifier
that amplified the laser power such that we have enough power for the red MOT beams.

To deliver the seed beam to the injection lock module in Path 3, the waveplate’s setting
has to be changed such that all the beams reflect from the PBS, thus all the beam power
directs to the path with two single pass AOMs (Fig. 3.3). These two AOMs shift the fre-
quency such that the seed beam is once again at 80 MHz above the 1S0 (F = 9/2) and
3P1 (F ′ = 11/2) transition.

Let us next talk about Path 4 and 5. Both paths get shifted by 625 MHz by the same
double-pass AOM. Path 5 was initially designed as the beam path to lock to the old refer-



Chapter 3 Production of ultracold strontium clouds 46

ence cavity that required a frequency shift of 625 MHz to match the cavity resonance and
atomic transition. Therefore, the thought was to split off a part of this frequency shifted
beam (Path 4) to prepare for the stirring laser beam that addresses 1S0 (F = 9/2)-3P1
(F = 9/2) transition, which is ∼1 GHz detuned from the 1S0 (F = 9/2)-3P1 (F = 11/2)
transition (Table 3.1). This beam needs additional frequency shifts to reach the desired
detuning, and these additional shifts are done in a separate breadboard which will be
discussed later. Currently, a laser beam from path 5 is fiber coupled to the beat with a
femtosecond optical frequency comb, which is very useful for determining the shift of the
cavity resonance that occurs due to the shrinkage of the cavity spacer.

Master laser’s frequency stabilization to a ultra-stable reference cavity

A great choice for reducing a laser’s linewidth is by stabilizing its frequency to a high-
finesse optical cavity. When the cavity mirrors are manufactured with the desired coating
specifications, a cavity resonance’s linewidth can be very narrow, thus transmitting light
with a narrow frequency band (although this band repeats every free spectral range).
Moreover, when the cavities are placed in the correct environment [106], the cavity
length, which is inversely proportional to the cavity’s resonance frequency, can be main-
tained stably. For these reasons, the cavity resonance frequency serves as a good fre-
quency reference. For instance, we expect that locking the master laser’s frequency to a
resonance of the TEM00 mode of our reference cavity would allow reaching a linewidth
∼1 Hz, given that all the known cavity lock systemics [107] are taken care of. Our cavity
assembly consists of a commercial notched cavity from Stable Laser Systems (ATF-4020-
4) that has a linewidth 5.4 kHz (finesse of 280000), enclosed in a custom-made cavity
housing. The details about our housing, the cavity assembly, and frequency stabilization
scheme which is done using the PDH scheme are available from [108, 109]. Currently,
the best laser linewidth we have observed with our setup is ∼4 Hz [109]. Reaching sev-
eral 1 Hz laser linewidths is not necessary for operating the red MOT; however, we use
a cavity with such a high finesse as we plan to also frequency stabilize the clock laser,
which is only 9 nm away from the red transition, to the same reference cavity.

The red 689 nm laser injection module

Unfortunately, the sources for amplifying the laser beam at 689 nm are few. Back in 2015,
we were excited to hear about the availability of 689 nm tapered amplifiers (TAs) from
Eagleyard that output 500 mW with a seed power of ≥10 mW. However, the highest fiber
coupling efficiency we could get was only 50 %, and we found that the beam power de-
grades over time. Over the course of 1.5 years, we observed a power degradation from
180 mW to 80 mW when operating the TA at 0.9 A, which is slightly below the maximum
current of 1 A. Therefore, we decided to try injection locking cheap laser diodes from
Thorlabs as an alternative, and we were happily surprised.
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Figure 3.4 The red laser injection lock module. (a) An illustration of our compact and stable in-
jection lock module. The module consists of three fiber coupling ports: for seeding, for
monitoring the lock, and for experiments. The third fiber port is often replaced with a
window to use the beam in free space. (b) Beam path for injection locking. The slave
diode is HL6750MG from Thorlabs and outputs ∼95 mW of power after an optical iso-
lator. Afterwards, the beam’s power is split for making the red MOT beams for the red
MOT in the main chamber (MC) and for making optical molasses beams for cooling in
the science chamber (SC)

We tried two diodes from Thorlabs: HL6738MG and HL6750MG. They cost only 47 €
and 77 €, respectively, whereas a typical price for a TA is 2,000 €. The diode HL6738MG
behaved as expected, similar to that described in the specification sheet. It outputs
∼30 mW, with a central frequency only about 1 nm away from 689 nm at room tem-
perature. To get more power, we tried HL6750MG. According to the specification sheet,
we expected that we would have to heat up the diode to 50 ◦C to get 50 mW of power
at wavelength close to at a wavelength of 689 nm. However, we found that the diode
outputs 94 mW after an isolator (∼90 % transmission) when operating at 112 mA, close
to the maximum current rating of 120 mA, and has a center wavelength 687 nm at room
temperature. The beam shape also looks reasonable, other than it being elliptical, which
can be easily fixed using a cylindrical telescope. After beam shaping, a coupling efficiency
to a fiber of ∼70 % can be achieved. Our first setup worked stably for up to two years
until the diode broke. As the diode is cheap and the setup is simple, replacing the diode
can be done in a few hours. However, unfortunately, the next two diodes broke within
three months. We are not sure what the problems were, but these two problematic diodes
were ordered at the same time. A further diode, received from a different order, has been
working well for a year. Therefore, the diodes’ long term reliability may need further
examination. Despite this, the injection lock setup is far more attractive than tapered
amplifiers due to its simple design that does not require water cooling, and its inexpen-
sive price. Moreover, there currently are commercial lasers at 689 nm based on the same
injection-locked diode from Moglabs.

The output of the injection locked slave laser shown in Fig. 3.4(b) is split into two paths
using a waveplate and a polarizing beam-splitter, and the two paths are fiber-coupled to
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the beam paths. One path shifts the frequencies for the red MOT beams for the main
chamber and the other path for optical molasses beams for cooling in the science chamber
(Chapter 5). Since the atoms transported to the science chamber are only ∼10 µK cold,
performing optical molasses in the science chamber needs significantly less beam power
than that needed for operating the red MOT in the main chamber. Therefore, we send
most of the beam’s power to the setup for the red MOT beams.

Frequency shifting for the red MOT beams
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Figure 3.5 Overview of the frequency shifting of the red slave laser system. The double-pass
AOMs used to modulate the beam’s frequency, and the single pass AOMs are used turn
on and off individual red MOT beams. The red MOT and stirring beams are merged
using non-polarizing beam splitter.

So far, we have discussed how to amplify the beam’s power and tune each beam’s fre-
quency to address the correct atomic transitions. However, apart from shifting the laser
frequencies to the atomic transitions, we also need to modulate and ramp up the beam’s
frequency for the operation of the red MOT to respectively artificially increase the cap-
ture velocity and to compress the atoms in the single frequency red MOT. Moreover, we
wanted the capability to turn on and off each beam independently to implement our new
cooling technique, described later. In addition, for cooling 87Sr, we need to merge the
red MOT and stirring beams. In this section, we describe the optical setup for the Red
MOT and stirring beams that achieves all the aforementioned requirements.



Chapter 3 Production of ultracold strontium clouds 49

We first focus on the setup for 88Sr, where the cooling is simpler than that for 87Sr due
to the absence of hyperfine structures. The basic setup starts from the beam derived from
the injection lock module and the schematic of the beam paths is shown in Fig. 3.5. The
beam is first split into two using a waveplate and polarizing beam-splitter cube, making
beam paths for the redMOT and probe beams. The beam for the redMOT passes a double
pass ∼80 MHz AOM, which is used to globally shift the frequency of all three +,−, z-axes
of the MOT beams. Then, the beam is split into four, and three of them are used to realize
+,−, and z-axis MOT beams. Each beam passes through another single-pass ∼80 MHz
AOM. The AOMs in front of each beam allow us to switch on and off the beams of different
axes independently, which is crucial for realizing the cooling technique explained later.
Then, all three beams are fiber coupled to the MOT breadboards (Fig. 3.6) placed on the
vacuum table. The fourth beam after the beam splitter can be used for spin polarization
or as an additional probe beam. Note that the exact frequencies of these AOM frequencies
are not exactly at 80 MHz, because they drift as the cavity resonance’s slow drift due to
the length shrinkage.

Since the double pass AOM is used to modulate the frequency, it is important to op-
timize the bandwidth of the double-pass AOM. For this reason, it is also ideal to make
the beam path from the double pass AOM to the fiber couplers as short as possible. The
distance we have in between the two is about∼50 cm, and we can sweep the double-pass
AOM up to 10 MHz (which means 20 MHz in laser frequency) while keeping the beam
power at the MOT breadboard within 90 %.

For 87Sr, a stirring laser beam source derived from the master laser setup is frequency
shifted further by single and double pass AOMs. We use this double-pass AOM to tune the
frequency of the beam close to the transition. The stirring beam is then merged with the
red MOT beam using a non-polarizing beam splitter. Therefore, like the red MOT beams,
the stirring beam is also split into four, with three of them being coupled to the MOT
breadboards in the vacuum table. We have about ∼200 µW of stirring beam for each
axis. In principle, the power of the stirring beam can also be amplified using another
injection lock module.

3.2.3 Repump laser system

Both 679 nm and 707 nm repump lasers are derived from Toptica DL Pro diode lasers.
We do not lock the lasers to the transition, but let each run free run at the transition
frequencies of 3P0-3S1 and 3P2-3S1, respectively. We tuned the frequency of the lasers
to the ones that maximize the fluorescence of the steady state blue MOT signals. For
operating the red MOT for 87Sr at which the 3P2-3S1 transitions split into many different
hyperfine transitions, we periodically modulate the frequency of the 707 nm laser by
scanning the piezo that changes the laser’s cavity length.
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3.3 Optomechanics near the main chamber
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Figure 3.6 Illustration of the blue and red MOT beam setup near the main chamber (taken
from [55]). The blue and red MOT beams are merged using a dichroic mirror and
expanded together using a ×10. The custom-made dual-wavelength waveplates are
used to set the correct polarizations for both MOT beams. The dichoric mirror that is
polarization-dependent for blue in the imaging path.

To achieve the two-stages of MOT, we merged both the blue and red MOT optics re-
quired for one axis into a single breadboard. A schematic sketch of the MOT beam paths is
shown in Fig. 3.6. Let us briefly discuss the optomechanics of the MOT breadboards. The
main chamber is surrounded by two vertical breadboards with a horizontal one on top,
each having the optics for the horizontal (+ and − axes) and vertical (z) red and blue
MOT beams, respectively. For a compact and stable design, we chose a vertical bread-
board that is 300 mm wide, 390 mm high, and 20 mm thick. On this breadboard, we
merge three beam paths: the red MOT, blue MOT, and blue imaging probe beams. To
fit all the optics and to produce the large blue and red MOT beams of 12 mm and 6 mm
in diameter, respectively, we use a mix of optics with different sizes. Initially, we keep
the beams relatively small such that we can use 1/2 or 1 inch optics, and merge blue
and red MOT beams using a dichroic mirror. Then, we magnify all the beams at once
using Thorlab’s 10× Galilean beam expander (Fig. 3.6). Moreover, we use Thorlab’s 1/2
inch Polaris mirror mounts to be both compact and stable. The appropriate polarization
configurations for the blue and red MOT beams are achieved by the custom-made dual
wavelength waveplates. The optics on the top breadboard are exactly the same as the
ones on the vertical breadboard except for an additional repump beam path and much
less spatial constraint. We find that the MOT setup is very stable, and we do not need to
re-align the MOT beams for years. What drifts are the beam powers due to the drifts of
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the fiber-coupling efficiencies between the fiber ports on the MOT breadboards and ones
on the laser table.

3.4 Loading to the 3P2 Magnetic Reservoir

We explain our experimental sequence for the two stages of the MOTs, the blue and red,
in detail. For the convenience of the notation, we use a coordinate system (X,Y,Z) which
correspond to (+,-,z) of the lab coordinate introduced in Fig. 3.1. After the atoms are
slowed by the Zeeman slower, we localize and cool the atoms by operating the blue MOT
on the 1S0-1P1 transition. For the blue MOT, we use three retroreflected laser beams at
460.86 nm with powers of (6 mW, 6 mW, 4 mW) along the (X, Y , Z) axes and 1/e2-waists
of 6 mm. A pair of anti-Helmholtz coils provides the magnetic quadrupole field B(ρ, z) =
B′
√
ρ2/4 + z2 for the MOT, with a gradient B′ = 63.7 G/cm (B′/2), with respect to the

axial (transverse) coordinate z (ρ =
√
x2 + y2). The blue MOT cools the atoms down

to ∼1 mK, limited by the Doppler cooling limit of TD = ~Γblue/(2kB) = 0.7 mK. Here,
2π~ = h is Planck’s constant and kB is Boltzmann’s constant. While operating the blue
MOT, the atoms leak to the 1D2 state and decay into 3P2 or 3P1 states. The atoms that de-
cayed to the metastable 3P2 atoms are then stored in a magnetic trap [64, 37] created by
the magnetic gradient of the MOT coils, whereas the 3P1 states decay back to 1S0 with a
rate of Γ = 2π×7.4 kHz and goes back to the blue MOT cooling process. We let atoms ac-
cumulate as the metastable 3P2 atoms in the magnetic trap, where the atoms are trapped
in the linear potential U(ρ, z) = g(3P2)m(3P2)µBB(ρ, z), and an exponentially decaying
density profile. Here, g(3P2) = 3/2 is the magnetic g-factor of the 3P2 state, m(3P2) is
the magnetic quantum number, and µB is the Bohr magneton. The density profile for the
bosonic isotope 88Sr thus depends on the relative occupation of the magnetic sublevels
|m| = 1 and 2. The hyperfine structure due to the large nuclear spin (I = 9/2) in the
fermionic isotope 87Sr complicates predictions of the density profile further. Compared
to 88Sr, the five hyperfine states have different and much smaller g-factors, which lead
to a more extended and less tightly trapped atomic cloud. In principle, the loading rate
to the magnetic trap can be enhanced by repumping the 3P1 states to the 3S1 states as
well [110].

The atom number in the magnetic trap saturates when the gain by loading from the
atomic beam balances the loss due to collisions with the atomic beam. For our system, we
find a corresponding 1/e magnetic trap lifetime of 24 s (16 s) for bosonic 88Sr (fermionic
87Sr) at an oven temperature of 600 ◦C. With the atomic shutter closed, we measure
1/e magnetic lifetime of 50 s for 88Sr irrespective of the oven temperature. After 3 s of
loading, we shine the repump lasers for 10 ms to the sample to transfer the atoms back
to the 1S0 ground state. For this purpose, we use two lasers that operate on the 3P2-3S1
and 3P0-3S1 transitions at 707 nm and 679 nm, respectively. The repump pulse transfers
atoms to the 3P1 state, from which they decay with a lifetime of τ = 21.28(3) µs [56]
back to the 1S0 ground state. For the laser intensities and magnetic fields used here, the
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1S0 state population is refilled with a 1/e-time of 1.3(1) ms. In the spinless electronic
ground state, the atoms experience almost no magnetic force and start to expand freely.

To further cool the atoms to the µK regime, they need to be captured in a secondary
narrow-line magneto-optical trap (“red MOT”) operating on the 1S0-3P1 transition at
λ ' 689.4 nm with linewidth Γ = 1/τ = 2π × 7.48(1) kHz. The large discrepancy be-
tween red and blue transition linewidths makes it necessary to significantly broaden the
linewidth of the red MOT laser to prevent atom loss: The Doppler-broadened linewidth
∆ωD = 2π×

√
4~Γblue ln 2/(mλ2) ' 2π× 0.9 MHz is ∼120 times larger than Γ. Further-

more, spatially confining atoms in a magneto-optical trap for the 1S0-3P1 transition re-
quires a magnetic quadrupole field with typical axial gradients B′ of a few G/cm [64, 49,
63, 37]. This order-of-magnitude reduction in magnetic field compared to the blue MOT
has to be achieved on timescales comparable to the 1S0 refilling time to prevent atoms
from escaping due to their per-axis atomic root-mean-square velocity ∼0.25 mm/ms. For
this reason, we switch the field gradient diabatically and we find a typical Zeeman shift
of several MHz on the red MOT transition.

3.5 The Red MOT using saw-tooth adiabatic passage

The traditional strategy to overcome such large Doppler and Zeeman shifts is to frequency-
modulate the red MOT laser at a modulation frequency fmod over a period tsweep =
1/fmod. The resulting laser spectrum is a comb of frequencies spaced by fmod, and
care has to be taken to find a balance between modulation speed and power-broadened
linewidth. Traditionally, the resulting cooling process has been explained in terms of
Doppler cooling with a modified laser spectrum. However, in this section, we present our
improved Red MOT sequence based on the recently-developed sawtooth-wave-adiabatic-
passage (SWAP) technique [66–69].

We first describe the basics of SWAP molasses cooling and extend this idea to the SWAP
MOTmodel. Then, we show that even the traditional approach is more usefully described
in terms of adiabatic rapid passage processes, because optimal sweep times are compara-
ble to the atomic lifetime τ [64, 49, 63, 37]. Lastly, we present our experimental sequence
and results of the performance of the SWAP MOT.

3.5.1 Optical molasses using sawtooth-wave adiabatic passage

In this section, we will explain the working principle of optical molasses via sawtooth-
wave adiabatic passage [66, 68]. Here, we consider the simplest case where a two-level
atom with internal ground g and long-lived excited e states that moves in one dimension
with velocity v and is subjected to co- and counter-propagating laser beams as shown
in Fig. 3.7. To initiate the cooling, the frequency ω of the two beams is linearly swept
across the resonance frequency of the g − e transition ωeg in a sawtooth pattern in time
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Figure 3.7 Illustration of working principle of optical molasses via sawtooth-wave adiabatic pas-
sage. The atom first interacts with a counter-propagating beam, getting a momentum
kick in an opposite direction of its motion. The atom subsequently undergoes stimu-
lated emission due to the co-propagating beam., resulting in another instance of the
same momentum kick.

with a duty cycle tcycle. In Fig. 3.7, we show this frequency sweep pattern where the
y-axis is shown as a function of the detuning ∆ from the free space resonant frequency
ωeg. Each laser beam interacts with an atom, giving a momentum kick ~k, but the two
beams interact with the atom at different times. The non-zero velocity of the atom in-
duces a Doppler shift kv in the reference frame of the atom, such that it first interacts
with a counter-propagating beam, getting a momentum kick in the direction opposite its
motion. Here, k is a wave-number given by 2π/λ where λ is a wavelength of the cooling
beams. Then, given that the atom stays in the e state, the subsequent interaction with
the co-propagating beam induces stimulated emission back to g which imparts another
momentum kick in the opposite direction of its motion as illustrated in Fig. 3.7. There-
fore, for each sweep, the atom receives a 2~k momentum kick on average which reduces
the atom’s speed.

Let’s look closely into the parameters that determine the efficiency of the cooling and
the cooling limit. First of all, the method relies on efficient transfer of atoms from g to e,
which depends on the Landau-Zener probability of adiabatic passage to the excited state.
Assuming that the lifetime of e is much longer than the duty cycle (tcycle � τe), and that
the Rabi frequency Ω of the beams stays constant, this probability is given by [68],

pLZ = 1− exp
(
−π2

Ω2

∆̇

)
(3.1)

where ∆̇ is a sweep rate ∆sweep/tsweep. Here, ∆sweep is a detuning range of the frequency
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sweep, and tsweep is the sweep duration. For the simplest case where the frequency of
the cooling beams are reset instantaneously before each sweep, tsweep = tcycle. From the
above expression, we can see this probability is solely determined by the adiabaticity pa-
rameter Ω2/∆̇. The above equation shows that one would want a fast sweep rate ∆ such
that the atoms do not decay during tsweep and also to address larger velocity classes, but
this comes at the cost of requiring dramatically larger Ω to ensure a high probability of
excitation. Although this equation captures an important understanding of the excitation
process, we will see later that the excited state population never reaches pLZ, because it
decays during the whole excitation process for the experimental parameters we use.

For this cooling to work, the time-ordering of the interaction with the two beams is cru-
cial. This ordering is determined by the initial state of the atom before the sweep starts,
the sweep direction, and the magnitude of the Doppler shift. Assuming tsweep = tcycle
once again, the initial state preparation and the sweep direction can both be controlled.
However, as the atoms are cooled via a train of sweep cycles, the Doppler shift of the
atoms also reduces. At low momentum, when the Doppler shift becomes small compared
to the Rabi frequency kv ≤ Ω, the time-ordering breaks and the atom would find itself
in a heating trajectory if the spontaneous emission is neglected [66]. However, in real
experimental settings, one cannot ignore the effect of the spontaneous emission which
resets the atom back to the correct state, which would be g for the sweep direction shown
in Fig. 3.7, at the beginning of each sweep, preventing the atoms from heating. Ref. [68]
shows that the SWAP cooling can cool the atoms close to the recoil limit when the correct
experimental parameters are met.

3.5.2 SWAP MOT

Our goal is to apply the SWAP cooling in a MOT setting. This setting is similar to the
previous but more complex: a three-level atom interacts with a train of frequency-swept
laser pulses in the presence of a quadrupole magnetic field, as illustrated in Fig. 3.8(a). In
addition, the two laser beams have equal intensities and opposite circular polarizations
and propagate with wave vectors ±kẑ, where k = 2π/λ. This three-level atom setting is
reflected in the level structure of 88Sr atoms. Specifically, we consider the non-degenerate
1S0 ground state |g〉 and the two stretched magnetic sublevels |±〉 of the 3P1 state (V-type
level scheme) for an atom moving in the ẑ direction, as shown in Fig. 3.8(a). Based on
our experimental results, we will argue later that the population dynamics for 87Sr with
its ten nuclear magnetic states can be understood in a similar framework.

In this section, we will be investigating the frequency modulation and illumination se-
quences sketched in Fig. 3.8(b). In the first strategy, we use broadband-modulated laser
cooling (BB), similar to traditional frequency-comb Doppler cooling. Here, the laser fre-
quency is scanned in a triangle ramp between ωstart and ωend, such that the laser is always
red-detuned from the atomic resonance at ωatom. We use three retroreflected laser beams
that are always turned on, as indicated by the continuous illumination sequence below
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Figure 3.8 Illustration of the SWAP MOT configuration. (a) One-dimensional laser cooling con-
figuration in the presence of a magnetic field gradient. We use a reduced three-level
system in a V configuration to model cooling on the 88Sr 1S0-3P1 transition. (b) De-
tuning (black solid lines) and illumination (red rectangles) sequences for the three axes
used in different cooling stages of the red MOT, as explained in the main text.

the frequency scan in Fig. 3.8(b). The red MOT lasers have 1/e2-waists of 3 mm and
we use powers of up to 8 mW per beam. All measurements in this paper use red light
derived from a tapered amplifier, seeded with a diode laser that is itself stabilized to a
high-finesse reference cavity.

As an alternative to the BB strategy, we investigate the sawtooth-wave adiabatic pas-
sage (SWAP) cooling technique [66–68]. In this method, the laser frequency is ramped
in a sawtooth-shaped ramp, as shown in the center panel of Fig. 3.8(b). In contrast to BB,
the laser is swept across the free-space atomic resonance to ωend and is rapidly reset to
ωstart on a timescale that is fundamentally limited by the acoustic wave transfer time in
the acousto-optical modulators that we use. To avoid another sweep across the resonance
during this reset, we turn off the radio-frequency power in the acousto-optic modulators
at ωend. In combination with technical limitations in the timing system, the frequency
reset results in dark time of ∼5 µs after each sweep.

We investigate three SWAP strategies, labelled SWAP-3, SWAP-2, and SWAP-1, respec-
tively, corresponding to the number of bright axes during each frequency sweep. Here,
SWAP-3 is the only previously studied strategy in the context of magneto-optical trap-
ping [67]. After a period of frequency-modulated laser cooling according to these strate-
gies, we apply a period of red-detuned single-frequency Doppler cooling to the atoms,
indicated in the bottom panel of Fig. 3.8(b) as strategy SF. We find that a combination of
the strategies SWAP-3, SWAP-1, and SF results in the highest phase-space-density sam-
ples on the shortest time scales. We will first show a simple model to explain both BB
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and SWAP strategies within a common framework.

Then, we will study the broadband BB, SWAP-3, SWAP-2, and SWAP-1 separately.
Lastly, we will show our final sequence that combines both broadband SWAP and the
single-frequency MOT.

SWAP MOT cooling model in 1D

We treat the atomic position z and velocity v classically and thus can combine the Doppler
and Zeeman shifts of |±〉 into a single parameter δ = kv + g(3P1)m(3P1)µBB′z/~ that
describes the energy splitting between the states |±〉 corresponding to themagnetic quan-
tum numbers m(3P1) = ±1. The J = 0 → J = 1 transition under consideration leads
to equal Clebsch-Gordan factors of 1/

√
3 for all possible transitions. Although we use

retroreflected laser beams, which produce a standing wave with rotating linear polariza-
tion at each position, |δ| > 0 locally selects the resonant transition and the cooling pro-
cess terminates as soon as |δ| locally becomes small compared to the power-broadened
linewidth. For a magnetic quadrupole field, the atom is thus cooled to a drift velocity
pointing towards the magnetic field zero.

The above considerations result in an equal Rabi frequency Ω ≡ Γ/
√

3
√
s0/2 for each

beam. Here, s0 = Ipk/Isat is the saturation parameter in terms of the saturation intensity
Isat = πhc/(3λ3τ) and the Gaussian laser beams’ peak intensity Ipk = 2P/(πw2

0), with
beam power P and 1/e2-waist w0, respectively. We also allow for the lasers to be switched
off by letting Ω(t) vary with time. The laser frequency for each beam is scanned simulta-
neously as ∆(t) ≡ ∆0 + f(t), starting at a fixed initial detuning ∆0 ≡ ωstart − ωatom and
continuing with a periodic frequency ramp f(t).

Under these assumptions, we find the time-dependent Hamiltonian

H(t)/~ =

∆(t) + δ 0 Ω(t)/2
0 ∆(t)− δ Ω(t)/2

Ω∗(t)/2 Ω∗(t)/2 0

 , (3.2)

and the optical Bloch equations for the density matrix ρ

ρ̇ = −i[H(t)/~, ρ] + Lρ. (3.3)

We model the effects of spontaneous emission on the elements of the density matrix by
the Liouvillian

Lρ = −Γ

 ρ11 ρ12 ρ13/2
ρ21 ρ22 ρ23/2
ρ31/2 ρ32/2 −ρ11 − ρ22

 . (3.4)

This model is useful to describe the loading and initial cooling of the red MOT be-
cause the atomic velocity and position do not change significantly on the timescale of
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the cycle time tcycle ≡ tsweep + tdark, which in all cases of interest is on the order of the
atomic lifetime τ . This condition places the initial stage of frequency-swept laser cooling
in the red MOT in an interesting regime. We work neither in the adiabatic rapid passage
regime, where tcycle � τ , nor fully in the steady state with respect to atomic decay, where
tcycle � τ . For this reason, adiabatic approximations of the Bloch equations produce mis-
leading results and we have to rely on numerical solutions to explain our experimental
results. For instance, we show the population dynamics of a typical pulse train for a rep-
resentative sweep (dead) time of tsweep = 2τ (tdead = 0.238τ) in the high velocity regime
in Fig. 3.9(a). Here, an atom at detuning δ = 100 Γ is exposed to a train of laser pulses
whose frequency is swept over ∆sweep = 1000 Γ, ending at ωend − ωatom = +13.3 Γ, with
a Rabi frequency of Ω = 34 Γ. Because of the large splitting between the excited states,
the pulse train efficiently excites only the |+〉 state. After the first excitation, spontaneous
emission reinitializes the atom to a ground state fraction depending on tcycle/τ . We find
that the population dynamics reliably settle to a periodic pattern for all parameter ranges
in this work after a few cycles.
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Figure 3.9 SWAP MOT cooling in a high-velocity regime. (a) Typical population dynamics in the
high-velocity (or |δ| � Ω/

√
2) regime. We use tsweep = 2τ and ∆sweep = 1000 Γ for

all results shown in this Figure. (b) Traditional broadband frequency-modulated cooling
can be understood within the same framework. For atoms at small |δ|, the downward
sweep causes stimulated emission by the same beam that caused the excitation on the
upward sweep. (c) In the adiabatic regime, where Ω2/∆̇ > 2/π, the cooling rate Γcool
is remarkably insensitive to the level splitting δ and Rabi frequency Ω. (d) The un-
wanted stimulated emission process partially cancels the desired momentum transfer,
reduces the cooling rate, and causes a stronger parameter dependence in the low-|δ|
regime for BB compared to SWAP.
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We can also see from Eqn. 3.2 that if |δ| � Ω/
√

2, because the velocity and the Zeeman
splitting are small or compensate each other, we have a competition between adiabatic
passage from the ground state to either of the excited states |±〉. If there is no imbalance
between the transition probability to |±〉, the cooling efficiency vanishes, because the
atom absorbs a photon from each of the counterpropagating beams. Typical population
dynamics for δ = 2.4 Γ are shown in Fig. 3.10.

The transition from cooling to heating leads to a balance where one finds the same
steady-state temperature kBTss = ~Ω/2 as for Doppler cooling as long as one cannot take
advantage of stimulated processes where the atom is stimulated back to the ground state
by the other beam [68]. In contrast to optical molasses [66] it is not possible to real-
ize this situation in a magneto-optical trap [67], because opposite circular polarizations
are used in combination with a magnetic-field gradient to create localization. In a situ-
ation where one can separate atomic localization from the excitation process, such as in
a magic-wavelength optical dipole trap, SWAP cooling could be much more effective by
exploiting stimulated emission in the regime of tcycle � τ as originally envisioned [66,
68].

To describe the efficiency of the cooling process, we introduce the laser cooling rate

Γcool ≡ Γ sign(δ)〈p+ − p−〉cycle (3.5)

as the difference between the scattering rates due to the cycle-averaged probabilities of
exciting the corresponding states p+ ≡ ρ11 and p− ≡ ρ22, respectively. Because the SWAP
cooling process is based on adiabatic passage, this cooling rate is remarkably insensitive
to laser frequency or intensity drifts, as shown in Fig. 3.9(c).
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Figure 3.10 SWAP MOT cooling dynamics in a high-velocity regime. Typical population dynamics
in the low-velocity (or |δ| � Ω/

√
2) regime where cooling stops.

Interestingly, we can understand the broadband-modulated laser cooling (BB), tradi-
tionally used in narrow-line magneto-optical traps for Sr [64, 49, 37] within the same
framework: In Fig. 3.9(b), we show population dynamics for a pulse train where the laser
frequency is ramped in a triangle pattern with the same slope (Rabi frequency) ∆̇ (Ω) as
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in panels (a), such that the adiabaticity parameter remains the same. The laser is never
turned off (tdead = 0) and the detuning ramp still spans ∆sweep = 1000 Γ, but ends to the
red of the resonance at ωend−ωatom = −13.3 Γ. We immediately see the disadvantage of
this BB strategy compared to the SWAP-1 strategy, in that p+ is not allowed to decay spon-
taneously, but is stimulated back to the ground state on the down-slope of the ramp by the
same beam that excited it. This stimulated process produces a momentum kick opposite
to the initial excitation and reduces the amount of spontaneous scattering, and thus Γcool.

As shown in Fig. 3.9(d), the BB strategy works well when the time between adiabatic
transfers on the up- and down-slope of the frequency ramp is long enough for a signifi-
cant fraction of p+ to decay, because adiabatic passage is insensitive to the direction of
the frequency sweep across the resonance. However, the cooling efficiency is strongly
reduced for low-|δ| atoms compared to SWAP-1. Some of this efficiency can be recovered
by modulating the laser frequency in a sinusoidal fashion (reduced ∆̇ at small |δ|) as tra-
ditionally done [49, 63], but SWAP is more efficient.

In conclusion, we find that the adiabatic passage picture provides a better framework
to understand both traditional BB and SWAP cooling strategies. In addition, the model
predicts that, compared to BB, SWAP (1) optimizes the excitation process for low-velocity
atoms at low Zeeman shifts, (2) makes the cooling process more homogeneous across the
whole thermal sample loaded from the magnetic trap, and (3) is more robust with respect
to intensity fluctuations.

In the subsequent section, we will show experimental results that support this conclu-
sion and discuss secondary experimental conditions that influence the choice of cooling
strategy.

3.5.3 Experimental Implementation of SWAP MOT

To study the differences between the cooling strategies sketched in Fig. 3.8(b), we start
by applying the corresponding pulse train for a time tred to the atomic sample while keep-
ing the magnetic field gradient and the laser intensity constant. At the end of tred, we
turn off the magnetic field gradient as well as the laser beams, and either image the atoms
in situ, or allow the atoms to fall for 15 ms before imaging. We take two absorption im-
ages simultaneously by exposing the atomic cloud for 50 µs to two separate probe beams
propagating along Y and Z, respectively. Using standard methods [86], we extract the
temperature, atom number, and in-trap phase-space-density of the atomic cloud. The
error bars for these quantities combine a 10% shot-to-shot atom number fluctuation with
the statistical fit error derived by rescaling each image fit to χ2 = 1.

The results for varying cooling times tred are shown in Fig. 3.11(a). Here, all strate-
gies use a common red laser power of 2 mW per axis and a sweep range of ∼11 MHz.
The SWAP strategies end at a (blue) detuning of 100 kHz, while the BB strategy ends at
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Figure 3.11 (a) The peak density decreases as a function of hold time when the intensity and
magnetic field gradient are held constant. At short times, light-assisted collisions at
high densities lead to loss for all cooling strategies. (b) Optimized ramp of the light
intensity and magnetic field gradient used to measure phase-space-densities (c) and
atom numbers (d) versus ramp time tramp for all modulation strategies.
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a (red) detuning of−100 kHz. We use a sweep time tsweep = 40 µs (80 µs) for SWAP (BB).

Compared to the SWAP strategies, BB exhibits a lower initial density, but a slower
decay at long times. We determine both 1/e lifetime τMOT and two-body-loss rate co-
efficient K2 for all strategies by fitting the solution of ṅ = −n/τMOT − K2n

2 to the
density data in Fig. 3.11(a). We find that the red-detuned BB strategy leads to a MOT
with τMOT = 25 ± 10 s, comparable to the lifetime of atoms in the magnetic trap. We
thus attribute this one-body loss to collisions with the atomic beam. The SWAP-1 and
SWAP-3 strategies lead to a reduced τMOT = 7(2) s and 8(2) s, respectively. In addition,
all strategies show non-exponential loss at short times, due to light-assisted scattering
on the repulsive V1u asymptote [111]. We find similar two-body-loss rate coefficients
K2 ' 5(1)× 10−12 cm3/s for all strategies at this laser power.

Previous attempts at optimizing the broadband stage of the cooling procedure made a
choice between quickly cooling only the coldest atoms for atomic clocks [49] and slowly
cooling almost all atoms for quantum gas experiments [37]. With the SWAP technique,
we aimed to combine the advantages of both methods and varied the parameters of each
strategy to obtain the coldest samples in the shortest times. As we see in Fig. 3.11(a),
the SWAP-1 strategy can condense hot atoms on fast timescales and thus reaches its
steady-state temperature quickly. This steady-state temperature is proportional to the
laser intensity, and the shape of the atomic cloud is determined by the magnetic field
gradient [49]. We thus ramp bothmagnetic field gradient and laser intensity with the em-
pirically optimized polynomial shapes shown in Fig. 3.11(b) while the atoms are cooled.
Under these conditions, we find that the strategies produce samples with dramatically dif-
ferent phase-space densities as a function of total ramp time. In Fig. 3.11(c), we see that
all strategies have an optimal associated time: If we ramp too quickly, the phase-space
density remains low. If we ramp too slowly, we start to lose phase-space density due to
light-assisted collisions between the coldest atoms. We also see that SWAP-1 produces
the highest phase-space densities while BB performs the worst. The SWAP-1 strategy
achieves this goal despite losing 40% of the atoms, as shown in Fig. 3.11(d). This loss
is not present in the other strategies, and we attribute this loss to hot atoms that escape
from the cooling region while the corresponding axes are not illuminated.

Based on these results, we decided to combine the high capture efficiency of SWAP-3
with the fast and efficient cooling of SWAP-1. We use the same laser power and magnetic
field ramps as in Fig. 3.11(b), but switch from SWAP-3 to SWAP-1 at a time tswitch < tramp.
We optimized tswitch and the SWAP cooling parameters of this combined sequence in de-
tail for both bosonic 88Sr and fermionic 87Sr isotopes, and found that its performance is
limited by the initial capture fraction of SWAP-3 from the magnetic trap.

In Fig. 3.12(a), we show the atom number at tramp = 45 ms (150 ms) for 88Sr (87Sr)
versus the initial power per beam Pinit. We trap 1.5×108 (1.0×107) 88Sr (87Sr) atoms for
Pinit = 8 mW. The data suggests that we reach the adiabatic passage regime for relatively
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low initial powers. We find that a sweep range of ∆sweep = 2π× 11 MHz (2π× 5.7 MHz)
for 88Sr (87Sr) produces a comparable power-dependence for both isotopes. The ratio
between sweep ranges is consistent with similar cooling conditions requiring similar adi-
abaticity parameters, and the lower average scattering rate for the F = 9/2→ F ′ = 11/2
transition in 87Sr compared to the J = 0 → J ′ = 1 transition in 88Sr. The final number
of 87Sr atoms is ∼80% of the value suggested by the relative natural abundance of 87Sr
and 88Sr (7.00%/82.58%). We attribute this discrepancy to the more extended atomic
density profile in the magnetic trap. If sufficient optical power is available, increasing the
beam sizes could lead to an improved capture fraction. For a given beam size, the capture
fraction of the SWAP MOT seems to be proportional to the adiabaticity parameter if we
take into account that 87Sr scatters less cooling light than 88Sr.

In the remainder of Fig. 3.12, we explore the SWAP cooling parameters for two rep-
resentative initial powers: (1) a “low” power per beam of 3 mW that is available from a
typical diode laser at 689 nm, and (2) a “high” power per beam of 8 mW that requires
multiple diode lasers or a tapered amplifier. For brevity, we only show data for 88Sr, be-
cause we find equivalent results for 87Sr with the caveat of a reduced scattering rate that
requires a reduced sweep range for the same power.

When we vary the sweep range ∆sweep by varying ωstart, we find the data shown in
Fig. 3.12(b). For high power, the atom number first increases and then saturates because
an increased sweep range can address atoms at higher Zeeman shifts. For low power,
the atom number peaks, but then slowly decreases with the linear decrease in adiabatic-
ity parameter. Even though the atom number shows a similar behavior in the low- and
high-power limits, the phase space density decreases exponentially with increased sweep
range, as shown in Fig. 3.12(c). This behavior is consistent with an exponential decrease
in the cooling rate due to the reduced adiabatic transfer efficiency ∝ pLZ. We show in
Fig. 3.12(d) that the sweep time influences the number of atoms dramatically as well:
the cooling rate is too small to capture the fastest atoms for increased sweep times. Fi-
nally, we find that reducing the sweep time below the natural lifetime does not improve
the number of captured atoms in the SWAP MOT, consistent with the predictions of the
optical Bloch equations in the previous section.

3.6 Single-frequency MOT

As a last step in our cooling protocol, we use traditional narrow-line laser cooling at a sin-
gle frequency to reach final temperatures of 1−2 µK. We start the red MOT with the opti-
mized SWAP combination sequence discussed the previous section. The laser frequency is
scanned from ωstart−ωatom = −2π×8.5 MHz (−4.2 MHz) to ωend−ωatom = 2π×0.1 MHz
for 88Sr (87Sr) as shown in the upper panel of Fig. 3.13. At the same time, the laser
power and magnetic field gradient are slowly ramped with the polynomial shapes shown
in Fig. 3.13. After reaching the steady state of the combined technique, we switch to the
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Figure 3.12 (a) The atom number in the SWAP MOT for an 8.5 MHz sweep range saturates as
a function of the initial laser power per beam Pinit for 88Sr and 87Sr. (b) For 88Sr,
the atom number saturates for high powers per beam (blue squares) as a function of
sweep range, but decreases linearly for large sweep range at low powers (red circles).
(c) At the same time, the phase-space density decreases exponentially. (d) Longer
sweep times preclude capturing the fastest atoms from the magnetic trap. Sweep
times shorter than the natural lifetime τ do not increase the capture fraction further.
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MOT beam frequency spectrum, power, and gradient traces versus the red MOT du-
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Figure 3.14 Performance of the final red MOT sequence. (a) Measured temperatures (red
squares) and phase-space densities (black circles) versus red MOT duration for 88Sr.
The label on the bottom (SWAP-3, SWAP-1 or single-frequency MOT) specifies the
active cooling strategy. In-situ images taken at different red MOT times are shown on
the top with atom number (N) and the direction of gravity (g). (b) We find compa-
rable results for 87Sr when taking the reduced scattering rate into account.
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single-frequency MOT at tramp to further cool the sample. To switch to the SF strategy, we
select cooling parameters that would leave the cloud shape and temperature unchanged.
Thus, we turn off the frequency scan, set the laser frequency to a −80 kHz (−10 kHz)
red detuning, and quickly lower the beam power from 1 mW to Pstart = 35 µW (20 µW)
for 88Sr (87Sr). Finally, we ramp the beam power once again with a polynomial shape to
Pend = 1 µW (0.5 µW) for 88Sr (87Sr) to reduce the steady-state temperature of the cool-
ing process. To ensure fast cooling during the single-frequency MOT, we minimize the
atomic movement along gravity caused by the change in the detuning and gradient [49].
We thus limit the detuning ramp amplitude to only ∼10 kHz and keep the gradient con-
stant.

The series of in-situ absorption images of 88Sr in Fig. 3.14(a) illustrates the cooling pro-
cess. The SWAP-3 strategy allows us to capture about 9×107 atoms, but the cloud remains
large and dilute. As soon as we switch to SWAP-1, the atomic cloud shrinks visibly. In
the single-frequency MOT, the atoms sag along the direction of gravity while cooling to a
few µK, which is a characteristic behavior of the bosonic narrow-line MOT [49]. We cool
to 3 µK after 5 ms of the single-frequency MOT without losing atoms. The phase-space
density at this point is 8×10−4, a factor of 400 larger than for the case of a red MOT time
of 25 ms (prior to this, we cannot get reliable estimates due to irregular in-situ shapes).
The phase-space density increases further over the final 45 ms of single-frequency cooling
and reaches 2 × 10−3 with a final temperature of 2 µK at the expense of losing 25% of
the atoms. Note that this final cooling step in the single-frequency MOT takes the same
amount of time as all of the initial cooling procedure, pointing towards a mechanism
that competes with the cooling process while the 88Sr atoms sag to the lower edge of the
MOT. This atom loss is likely due to a combination of light-assisted collisions and radia-
tion trapping [35, 112].

We apply the same protocol to 87Sr, but increase its cooling efficiency by adding red
stirring laser beams [64], which copropagate with the red MOT beams. The in-situ
images in Fig. 3.14(b) show the cooling progress for 87Sr. Unlike 88Sr with its vanishingly
small scattering length, the 87Sr sample does not sag under gravity. Instead, it thermalizes
by interparticle collisions [64, 37]. We observe larger and more dilute initial atomic
clouds of 87Sr than of 88Sr during SWAP-3, because of the reduced cooling rate discussed
in the previous Section. For the same reason, it takes longer to condense the 87Sr cloud
to the steady state in the subsequent SWAP-1 cooling stage. In total, we find that we
need to operate the SWAP MOT about three times longer for 87Sr than for 88Sr. We reach
a temperature of 3 µK and a phase-space density of 5 × 10−5 at the end of SWAP-1.
The subsequent 10 ms of single-frequency MOT cools the atoms further, reaching a final
temperature of 1.4 µK and a phase-space density of 1.4× 10−4 without atom loss.
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3.7 Conclusion

In this chapter, we described the basic construction of our Sr quantum simulator including
the vacuum system, laser systems, and production of red and blue MOTs. For the latter,
we described an improved method to produce high-phase-space-density red MOTs us-
ing sawtooth-wave adiabatic passage cooling. With a simple model, we have shown that
even the traditional broadband-modulated laser cooling used in most Sr MOTs is bet-
ter understood within the adiabatic passage framework. Our theoretical studies predict
and our experimental results show that a SWAP MOT is more robust and efficient than
the traditional broadband-modulated MOT. We investigated three SWAP MOT strategies.
We found that illuminating all axes in the SWAP-3 strategy leads to the largest capture
fraction from the magnetic trap. Once the atoms have been captured and cooled to the
steady-state temperature, it is beneficial to illuminate only one MOT axis at a time. This
SWAP-1 strategy reduces light-assisted collisions, avoids unwanted stimulated exchange
of momentum between different axes, and thus leads to a much faster cooling speed at
low temperatures. At very low temperatures, regular narrow-line Doppler cooling at a
single frequency becomes the optimal strategy (SF). To exploit the advantages of SWAP-
3, SWAP-1, and SF, we combined them in an optimal way. With this combined sequence,
we created high-phase-space-density samples of bosonic 88Sr and fermionic 87Sr atoms
within 50 and 160 ms, respectively. Our results for 88Sr also suggest that the narrow-line,
single-frequency cooling stage produces most of its effect on time scales of 10 ms before
it becomes limited by density-dependent effects [35, 112]. Our method is simple to im-
plement, and in combination with high-flux atomic sources [112–114], it can be used to
improve the duty cycle of atomic clocks and the repetition rate of precision experiments
and quantum simulations. Extending our method by a final dark-spot MOT stage [37]
might result in even lower final temperatures and higher phase-space densities. We ex-
pect that our cooling method can also benefit narrow-line magneto-optical traps for other
two-electron atoms, lanthanides, and molecules.
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Chapter 4

Demonstration of a state-dependent lattice for the
strontium clock states

Having presented the background knowledge of state-dependent traps and our steps for
creating both a ∼1 µK-cold 88Sr and 87Sr atomic cloud, we are finally ready to discuss
our experimental demonstration of a state-dependent optical lattice for strontium clock
states. This demonstration was performed using the same setup as described in the pre-
vious chapter (Chapter 3) and by loading the ultracold strontium into a 1D optical lattice
made with a free-space beam. Although our ultimate goal is to implement 3D state-
dependent lattices in which the horizontal lattices are generated by the build-up cavities,
benchmarking the performance of a state-dependent lattice in a simpler setting using a
1D lattice made by a free-space beam will help us disentangle any heating problems that
arise in the cavity setup in future.

For the benchmarking, our goals were 1) to precisely measure the tune-out wave-
lengths, which has not been done for strontium prior to this work although many related
works exist for alkali atoms, 2) to measure the polarizabilities of g and e at the tune-out
wavelengths of e and g, respectively, thereby benchmarking the achievable trap depth,
3) to trap the clock states in the state-dependent lattices and measure their lifetimes.
While pursuing these objectives, we focused exclusively on the tune-out wavelength of g
(λt,g), for two reasons. First, the excited state (e) atoms have strong two-body collisions
that shorten their lifetimes in a 1D lattice. Second, the tune-out wavelength of e lies at
633 nm, where the available laser power is limited. Although diode lasers are available,
they only output ∼30 mW, and tapered amplifiers at this wavelength are currently not
available (although they were once available from the company Eagleyard for a limited
time). One method could have been to use a dye laser or setting up a doubling cavity
from 1266 nm. Since our build-up cavities would solve the laser power issue, we decided
not to put any effort into developing high power laser sources for 633 nm. Despite the
above limitations, the methods that will be explained in this section can be applied to e
atoms without much difficulty in our final setup. In it, we have the ability to restrict lat-
tice occupancy to one atom per site in a 3D lattice, thus eliminating two-body collisions.
Furthermore, the intra-cavity amplification from the build-cavities allows the generation
of deep lattices at 633 nm.

In this chapter, we elaborate on the calculation of dynamical polarizability α(ω) using
a quantum mechanical picture and provide the tune-out frequency ωt,g (2π × c/λt,g) for
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88Sr and 87Sr (Section 4.1). Since we only consider the tune-out frequency (wavelength)
of g in this section, we drop the subscript g and replace ωt,g (λt,g) with ωt (λt). Then,
we summarize the experimental setup and results of measuring ωt and implementing the
state-dependent lattice at ωt (Section 4.2). Since this work has been performed jointly
with another PhD researcher who has already published his thesis [55], we will keep the
summary brief as most of the details can be found in Ref. [55] and [40], and we will focus
on those that have not been discussed. Lastly, we discuss how the precise knowledge of ωt
can be used to calculate atomic lifetimes, refining our knowledge of the atomic structure
of strontium (Section 4.3). As strontium is the primary atom used in optical lattice clocks,
precise knowledge of its atomic structure can reduce the uncertainty on the systematic
frequency shifts of strontium atomic clocks. When calculating these lifetimes, we find
large discrepancies in the atomic data that are used to calibrate systematic effects in Sr
optical lattice clocks, thus calling for a thorough experimental reinvestigation.

4.1 The 1S0 ground state tune-out frequency

The dynamical polarizability α(ω) of an electronic state consists of contributions from
the core electrons (α(c;ω)) and valence electrons. The valence part of the polarizability
is determined by summing up all the contributions of excited states v that are dipole-
coupled to the state of interest,

∑
v α(v;ω), and it is this valence polarizability that we

reviewed in Section 2.3. For applications of creating far-off resonant traps, researchers
are interested in the range of ω where α(ω) � 0 or α(ω) � 0. In this case, the valence
part dominates,

∑
v α(v;ω)� α(c;ω); thus, α(c;ω) is often neglected. However, for pre-

cise knowledge of the tune-out frequency where α(ω) = 0, α(c, ω) cannot be ignored as
it shifts the tune-out frequency, although α(c;ω) can be treated as an offset that does not
depend on ω.

Each contribution from an excited state v of the valence part can be calculated by
treating the effect of a far-off resonant laser light as a second order perturbation to the
energy of a non-degenerate atomic state of interest k [115–118]. This treatment results
in

αk(v;ω) =
( |〈v| ê · d |k〉|2

~(ωkv − ω − iAv/2) + |〈k| ê · d |v〉|2

~(ωkv + ω + iAv/2) ,
)

(4.1)

where ê, d, Av are the laser polarization unit vector, induced dipole moment, and the
total decay rate of an excited state v, respectively, as already introduced in Chapter 2.
Here, 〈k| ê ·d |v〉 is a dipole matrix element between k and v. This dipole matrix element
is related to the partial decay rate as:

Γkv = ω3
kv

3πε0~c3 |〈v| ê · d |k〉|2. (4.2)

In most cases, the total decay rate Av is well known from experimental measurements,
whereas Γkv is not directly accessible. Therefore, Γkv can be calculated from a measured
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Av. Following the derivations in Refs. [65, 107],

Γkv = Avω
3
kv

(2Fk + 1)
{
Fk Fv 1
Jv Jk I

}2

∑|Jk+I|
F=|Jk−I| ω

3
k,F (2F + 1)

{
F Fv 1
Jv Jk I

}2

Fv∑
mv=−Fv

(2Fv + 1)
(
Fk 1 Fv
mk p −mv

)2

(4.3)
where we have considered a case that an excited hyperfine structure manifold decays to
a lower hyperfine structure manifold, Fv → Fk. The summation in the denominator in
Eqn. (4.3) takes into account that Fv can decay to any ground hyperfine structure. Here,
p specifies the laser polarization where p = 0 is linear and p ± 1 is circular. The above
expression can be used for the fine structures as well; in that case, F , J , and I are re-
placed by J , L, and S, respectively. It can be shown that for the case of a two-level atom,
Γkv = Av, and Eq. (4.1) becomes approximately α(ω), found using the classical approach
in Eq. (2.6). In a nutshell, Eqn. (4.3) contains a branching ratio of different decay paths
and Clebsch Gorden coefficient resulted from applying the Wigner-Eckert theorm to the
dipole operator.

Let us now focus on calculating α(ω) of the ground state 1S0 (αg(ω)). The valence
part of the ground state 1S0 (g) polarizability is determined by summing over all the
contributions of excited states dipole-coupled to g, which is dominated by the 1P1 and
3P1 contributions. For this reason, we write the g polarizability using the four components

αg(ω) = αg(1P1;ω) + αg(3P1;ω) + αg(v′;ω) + αg(c;ω), (4.4)

where αg(j;ω) are the contributions from the excited state j, αg(v′;ω) is the sum of con-
tributions from all other valence states, αg(c;ω) is the contribution of the core electrons.

The contribution from the 1P1 and 3P1 states be expressed in terms of the total decay
rate Av by combining Eq. (4.1), Eq. (4.2), and Eq. (4.3). However, it would be difficult to
see the dependence of the polarizability on light- and atom-polarization. A more nature
way to expression the valence polarizability is to decompose it into a spherical tensor
basis. This decomposition will allow us to see the dependence of the polarizability on
light- and atom-polarization better, providing us an intuitive picture for the light and
atom interactions. A good derivation and review of this decomposition is available from
Refs. [116, 115, 107, 119], although the notations vary across the literatures. Then, the
each contribution decomposes into scalar, vector, and tensor components as [116, 115]

αg(j;ω) = αsg(j;ω)

+ αvg(j;ω)(iε× ε∗) · ez
mF

F

+ αtg(j;ω)3|ε · ez|2 − 1
2

3m2
F − F (F + 1)
F (2F − 1) ,

(4.5)
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where F is the hyperfine quantum number associated with the ground state g, mF is
the corresponding magnetic quantum number, and j indicates one of the excited states
1P1 and 3P1. The 1S0 (g) state of the fermionic isotope 87Sr has a single hyperfine state
F = 9/2, since the electronic angular momentum J and the nuclear spin I are 0 and 9/2,
respectively (|J− I| ≤ F ≤ |J+ I|). For the bosonic isotope 88Sr where I = 0, J replaces
F (F = J). Therefore, any discussion involving Fj throughout this text only applies to
87Sr. The quantization axis is assumed to be along ez, and ε is the complex polarization
vector of the applied laser at frequency ω. From Eqn. (4.5), we can see that the scalar
component does not depend on the polarization, while the vector and tensor components do.

The scalar, vector, and tensor parts themselves can be written as sums over all hyperfine
states Fj in the excited fine structure state [116, 115]

αsg(j;ω) =
∑
Fj

2
3g

(0)
j,Fj

(ω)|Dj,Fj |2,

αvg(j;ω) =
∑
Fj

(−1)F+Fj+1

√
6F (2F + 1)
F + 1

×
{

1 1 1
F F Fj

}
g

(1)
j,Fj

(ω)|Dj,Fj |2,

αtg(j;ω) =
∑
Fj

(−1)F+Fj

√
40F (2F − 1)(2F + 1)

3(F + 1)(2F + 3)

×
{

1 1 2
F F Fj

}
g

(2)
j,Fj

(ω)|Dj,Fj |2.

(4.6)

Scaling of the polarizability terms as a function of laser detuning is encapsulated in the
detuning factors

g
(K)
j,Fj

(ω) = 1
2~Re

( 1
ωj,Fj − ω − i

2τj

+ (−1)K

ωj,Fj + ω + i
2τj

)

≈ 1
2~

( 1
ωj,Fj − ω

+ (−1)K

ωj,Fj + ω

) (4.7)

where ωj,Fj is the transition frequency from the ground to the excited hyperfine state Fj ,
τj is the excited state lifetime (1/ATj), and K = 0, 1, 2 for scalar, vector, and tensor
polarizabilities, respectively [116, 115]. Because we work in the far-detuned regime to
find ωt, we can ignore the imaginary terms in the denominators of Eqn. (4.7), which we
have confirmed numerically. The detuning factor is identical for the scalar and tensor po-
larizabilities, but the counter-rotating term for the vector polarizability changes its sign.

All polarizability terms scale with the modulus-squared of the reduced matrix element
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associated with the corresponding dipole transition

|Dj,Fj |2 = |〈g, F‖D‖j, Fj〉|2. (4.8)

Since the 1S0 state of 87Sr has a single hyperfine state and there exists only one decay
path, the situation greatly simplifies and the reduced matrix element can be expressed in
terms of the excited state lifetime τj as

|Dj,Fj |2 = 3πε0~c3

ω3
j,Fj

τj
(2Jj + 1)(2Fj + 1)

{
J Jj 1
Fj F I

}2

. (4.9)

4.1.1 1S0 tune-out frequency of 88Sr

Let us finally apply the expressions we have derived to calculate the tune-out frequency
of 88Sr. Due to the absence of hyperfine structure, the situation strongly simplifies for
the case of 88Sr. Replacing F (Fj) with J (Jj) where J=0 (Jj = 1 for both 1P1 and 3P1
contributions) in Eqn. (4.6), the vector and tensor polarizabilities vanish and only the
scalar component remains. The resulting polarizability is

αg = αsg = 3πε0~c3

ω3
1P1
τ1P1

( 1
ω1P1 − ω

+ 1
ω1P1 + ω

)
+ 3πε0~c3

ω3
3P1
τ3P1

( 1
ω3P1 − ω

+ 1
ω3P1 + ω

)

= 6πε0~c3

ω2
1P1
τ1P1

( 1
ω2

1P1
− ω2

)
+ 6πε0~c3

ω2
3P1
τ3P1

( 1
ω2

3P1
− ω2

)
. (4.10)

Each contribution of 1P1 and 3P1 Eqn. (2.6) retains the same form as the classical form
we discussed in Section. 2 (Eqn. (2.6)) due to the fact that the upper levels only decay
to g and the simple structure of 1S0 ground state that has J = 0. Neglecting the small
contributions from αg(v′;ω) and αg(c;ω), the tune-out frequency occurs when αg(1P1;ω)
balances αg(3P1;ω), thus it lies in-between ω1P1 and ω3P1 . Since τ1P1 � τ3P1 , the tune-
out frequency occurs very close to ω3P1 to cancel out the contribution from 1P1. For
this reason, a better way to denote the tune-out frequency is its detuning from ω3P1:
∆t = ωt − ω3P1 .

To calculate the tune-out detuning precisely, we also need the knowledge of the core
and remaining valence contributions. Our theory collaborators, M.S. Safronova’s and
S.G. Porsev’s, performed these calculations. They calculated the valence contributions of
αg by solving the inhomogeneous equation as described in Refs. [120, 121]. Then, us-
ing the sum-over-states formula Eqn. (4.6), we extracted the contributions of the 1P1 and
3P1 states and determined the remaining valence contributions, αg(v′,∆t) = 6.57(14) a.u.
The core part of the polarizability, αg(c; ∆t), was also calculated by them using the single-
electron approximation including random-phase approximation corrections [122] to be
αg(c; ∆t) = 5.30(5) a.u.
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Combining all, we obtain ∆t = 143.796 GHz for 88Sr. For ω1P1 and ω3P1 , we use the
values from Ref. [123] and [124], respectively. The 1S0-3P1 transition frequency (ω3P1)
has been measured directly with a 10 kHz precision, and the precise knowledge of ω1P1
is not necessary because ∆t is far de-tuned from it. Using our wavemeter, we measure
ω1P1 that is ∼ 2π× 500 MHz away from the reported value in Ref. [123]; however, this
discrepancy shifts ∆t less than 2π×1 MHz. However, the lifetimes τ1P1 and τ3P1 are critical
in determining ∆t. For these lifetimes, we use the measured values from Ref. [125] and
Ref. [56] for τ1P1 and τ3P1 , respectively. The former value was measured using photoasso-
ciative spectroscopy [125], and the latter has been measured directly by measuring the
photons collected from 3P1 decaying to 1S0 [56].

4.1.2 1S0 tune-out frequency of 87Sr

We have shown above that the hyperfine structure of 87Sr make the polarizability cal-
culation more complicated. Let us know find out by how much ∆t changes due to the
hyperfine structures. The two excited states of interest 1P1 and 3P1 both have Jj = 1,
and thus have the same three hyperfine states Fj = 7/2, 9/2, and 11/2. For this reason,
the scalar, vector, and tensor polarizabilities only differ in the group-theoretic numerical
prefactors associated with the excited states, except for the slightly different detuning
dependence of the vector polarizability.

Note that ωj,Fj can be expressed in terms of the (hypothetical) hyperfine-free transition
frequency ω̄j and the hyperfine shift ∆j,Fj as ωj,Fj = ω̄j+∆j,Fj . The hyperfine shift can be
calculated from the magnetic dipole interaction constant Aj and the electric quadrupole
interaction constant Qj as [65, 71]

∆j,Fj = Aj
2 Kj + Qj

4

3
2Kj(Kj + 1)− 2I(I + 1)Jj(Jj + 1)

I(2I − 1)Jj(2Jj − 1) ,

Kj = Fj(Fj + 1)− Jj(Jj + 1)− I(I + 1),
(4.11)

where Jj is the electronic angular momentum of the excited state. We use the hyper-
fine constants A1P1 = −2π × 3.4(4) MHz, Q1P1 = 2π × 39(4) MHz, A3P1 = −2π ×
260.084(2) MHz, andQ3P1 = −2π×35.658(6) MHz, summarized in Ref. [65]. The isotope
shift of ω̄3P1 was measured recently in Ref. [105]: the hyperfine-free transition frequency
of 1S0-3P1 in 87Sr is red detuned by 62.1865(123) MHz from the transition frequency in
88Sr [124]. As previously mentioned, the 1S0-1P1 transition frequency does not need to
be as precise and is obtained from Ref. [123]. The isotope shift on this transition does
not influence the calculations, as will be shown below.

To study the contributions from each component in detail, we dig deeper into the scalar,
vector, and tensor polarizabilities of the 87Sr 1S0 state. By specializing the prefactors, we
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Figure 4.1 Comparison of α2
g(ω) for 87Sr and 88Sr near ∆t. (a) The 1P1 scalar contribution as a

function of detuning from the 1S0-3P1 transition. For the case of 87Sr, the detuning is
referenced with respect to ω̄3P1 , which includes the isotope shift. (b) same as (a) but
with the 3P1 contribution. The inset shows αs(3P1;ω) at the detuning range relevant
to ∆t.

re-write the reduced matrix elements as

|Dj,Fj |2 = 3πε0~c3

ω3
j,Fj

τj
[4/5, 1, 6/5], (4.12)

where the numerical factors in the square brackets correspond to Fj = 7/2, 9/2, and
11/2, respectively. As expected, this means that the lifetime τ proportionally scales up
scalar, vector, and tensor polarizabilities. Bringing it all together, we find

αsg(j;ω) = 2
∑
Fj

3πε0~c3

ω3
j,Fj

τj

[ 4
15 ,

5
15 ,

6
15

]
g

(0)
j,Fj

(ω),

αvg(j;ω) =
∑
Fj

3πε0~c3

ω3
j,Fj

τj

[
−44

55 ,−
10
55 ,

54
55

]
g

(1)
j,Fj

(ω),

αtg(j;ω) =
√

2
3
∑
Fj

3πε0~c3

ω3
j,Fj

τj

[
− 88

165 ,
160
165 ,−

72
165

]
g

(2)
j,Fj

(ω).

(4.13)

Therefore, finding ∆t for 87Sr is more complicated due to the vector and tensor com-
ponents, thus ∆t is also dependent on the laser polarization.

4.1.3 Far-detuned regime at ∆t: αg(ω) of 88Sr vs 87Sr

To get an intuitive picture of how the hyperfine structure changes αg(ω), we compare
the αg(ω) of 87Sr and 88Sr at the far-detuned regime from both ω1P1 and ω3P1 , which is
in fact the case for ∆t. For this, we approximate |Dj,Fj |2 of 87Sr to ≈ 3πε0~c3

ω̄3
j τj

[4/5, 1, 6/5]

to pull 3πε0~c3

ω3
j,Fj

τj
out of the sum in Eqn. (4.13). After this approximation, we see that both

vector and tensor polarizabilities sum to zero when we are in the far-detuned regime
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Figure 4.2 Comparison of αv
g(ω) and αt

g(ω) for 87Sr and 88Sr near ∆t. (a) the 1P1 vector contri-
bution as a function of detuning from the 1S0-3P1 transition for different mF states
(Eqn. (4.6)). We assume the beam ellipticity of 1 to show the upper limit. (b) the 1P1
tensor contribution (Eqn. (4.6)) as a function of detuning from the 1S0-3P1 transition
for different mF states. Here, we assume a linear polarization to show the upper limit.
(c)-(d) same as (a)-(b), but from the 3P1 contributions.

compared to the hyperfine structure, where the detuning factor contributes equally, and
can be pulled out of the sum. In this regime, the only contribution that survives is the
scalar polarizability. For the same reason, we also expect negligible differences in αs be-
tween the two isotopes in this regime. The scalar polarizability component of 1P1 and
3P1 of the two isotopes are illustrated in Fig. 4.1(a) and (b), respectively, as a function
of the detuning from the 1S0-3P1 transition. In Fig. 4.1 (b), we see that they become
indistinguishable as the detuning increases (the plot was generated based on Eqn. (4.13)
without the approximation on |Dj,Fj |2). Note that the detuning for 87Sr is referenced
with respect to ω̄j , which takes the isotope shift into account.

Next, we take a closer look at each contribution in the detuning range relevant to ∆t

without any approximation. Comparing Fig. 4.2(b)-(c) and (e)-(f), the 1P1 tensor and
vector contributions are more than two orders of magnitude smaller than the contri-
butions from the 3P1 state, since the frequency of ωt is more than a few hundred THz
detuned from the 1S0-1P1 transition. For this reason, we can ignore the vector and tensor
contributions to αg(1P1;ω) and set αg(1P1;ω) = αsg(1P1;ω).

With this simplification, we analyze the difference of the 87Sr and 88Sr tune-out detun-
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αg(3P1, ω) δ∆t = ∆87
t −∆88

t

αsg(3P1;ω) +2π × 8 MHz

αvg(3P1;ω) −2π × 23 MHz ≤ δ∆t ≤ +2π × 23 MHz

αtg(3P1;ω) −2π × 2 MHz ≤ δ∆t ≤ +2π × 12 MHz

Table 4.1 Comparison of the 87Sr and 88Sr tune-out detuning: ∆87
t was numerically computed

considering the contributions shown in the left column. For the vector and tensor con-
tributions, the shift was calculated for the stretched |mF | = F states and we show the
corresponding ranges. A beam ellipticity of 2% was used for the vector shifts and we
assumed perfect (maximum) polarization alignment for the tensor shifts.

ing ∆t due to the hyperfine structure. Table 4.1 shows the shifts due to scalar, vector, and
tensor polarizabilities. For the calculations due to the vector polarizabilities, we used an
upper limit on the beam ellipticity of 2%, and assumed perfect alignment of ε · ez = 1 to
evaluate the tensor polarizability. The shifts depend on the mF states (Eqn. (4.6)), and
we show the maximum ranges of the shift as a worst case estimate. In the experiment,
we do not spin-polarize the sample, and we likely work with an equal population among
all mF states. As a conservative estimate, we use the full span due to the vector shift to
estimate differential shifts between the measured tune-out detuning ∆88

t for 88Sr and the
tune-out detuning ∆87

t for 87Sr.

4.2 Measurement summary

After having calculated the expected ∆t and understood the main contributors to this
value, let us recap the goals that we mentioned in the beginning of the chapter were to (1)
precisely determine ∆t, (2) to measure αe(ω) at ∆t, (3) implement the state-dependent
lattice created at∆t. To achieve the above goals, we used the followingmethods described
in detail [82]:

(1) We loaded ∼ µK-cold thermal atoms in an incommensarate 1D lattice composed
of a deep magic-wavelength (813 nm) lattice and a shallow lattice created by the
light near the tune-out wavelength (689.2 nm). Here, the deep lattice was gener-
ated by retro-reflecting 290 mW of 813 nm light, making a lattice with a longitudi-
nal trap frequency (νt = ωt/2π) of ∼40 kHz, and the shallow tune-out lattice was
generated by retro-reflecting the beam with a power of 4.5 mW. Once the atoms
were loaded, we intensity modulated the shallow lattice at 2νt causing parametric
heating [126] that resulted in transitions between lattice bands that are two mo-
tional quanta apart. This heating causes atom loss from the lattice. We measured
the corresponding induced loss rate at particular detuning of the shallow lattice
by measuring the atom number as a function of modulation time. When repeat-
ing such measurements at different detunings of the shallow lattice, one would
expect the loss rate to approach 0 at ∆t. Thus, by measuring the detuning where
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the heating rate diminishes, we determined ∆t. This simple method is distinct
from conventional methods that typically use atom interferometers based on ther-
mal atoms [127–130] or quantum degenerate gases [30, 84, 131, 132], and allows
long interrogation times and applicability to atoms in excited states, molecules, and
trapped ions. We performed the above measurements for both 88Sr and 87Sr.

(2) Once∆t was determined using the abovemethod, wewere ready tomeasureαe(ωt).
For this measurement, we turn off the shallow lattice and only trap the atoms in
the deep lattice. Then, we performed the clock spectroscopy using 87Sr, measuring
the carrier frequency, in the presence of a laser beam ωt as a function of beam
power. Such a beam shifts the frequency of the carrier peak given by the ac-Stark
shift that is proportional to αe(ωt) and the intensity of the beam. We calibrate the
intensity by measuring the free-space Rabi oscillations on the 1S0-3P1 transition
using a resonant beam that had been merged with the Stark-shifting beam in the
same optical path.

(3) We excited 87Sr g atoms trapped in the deep magic lattice to e by applying a 10-ms-
long adibatic-rapid-passage pulse. Then, we transferred them to the tune-out lattice
with νt ∼ 40 kHz by diabatically turning on the tune-out lattice beam, followed by
ramping down of the magic-wavelength lattice after 1 ms. Then, we measure the
number of atoms as a function of lattice hold time to extract the lifetime of e atoms
in the tune-out lattice.

The results of our goals (1),(2), and (3) as follows:

(1) We obtained ∆t = 143.009 GHz ± (8 MHz)stat ± (2 MHz)sys and ∆t = 142.86 GHz
± (80 MHz)stat ± (2 MHz)sys for 87Sr for 88Sr and 87Sr, respectively. We attribute
the larger uncertainty in ∆t of 87Sr due to worse data quality due to the two-body
decay collisions. The small difference of ∆t of 87Sr and 88Sr is expected due to the
hyperfine structure of 87Sr.

(2) We obtained αe(ωt) = 1555± 8state± 2sys a.u.. To the best of our knowledge, this is
the first time in which the alkali-earth atom’s excited state polarizability has been
measured.

(3) The measured lifetime of e in a tune-out state-dependent lattice agrees well with
the theoretically predicted loss due to photon scattering for each lattice axis of 24
s per recoil of lattice depth. Depending on the application, a compromise between
lattice depth and tunneling rate needs to be found. For instance, a two-dimensional
tune-out lattice trapping e atoms in a Mott insulator state would have a lifetime
∼1 s.

4.3 Atomic lifetime determination

One might have noticed that our measured value of 88Sr ∆t does not agree with the value
that was calculated in Sec 4.1.1. This calculation used the values of τ1P1 and τ3P1 that
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were measured in Ref. [125] and [56], respectively. Now, we can turn this calculation
around to estimate τ1P1 , which was measured only in an indirect manner in Ref. [125], by
combining our data and the directly measured value of τ3P1 [56] into a rearrangement
of Eqn. (4.10):

τ1P1 = −6πε0c3

[αg(v;ωt) + αg(c;ωt) + αsg(3P1, ωt)]ω2
1P1

(ω2
1P1
− ω2

t )
(4.14)

Doing this calculation gives a value of τ1P1 =5.234(8) ns, which has a 7σ discrepancy with
the currently accepted value of 5.263(4) ns [125].

We highlight that the currently best values for τ3P1 and the lifetime of the 3D1 state
are correlated because they are extracted from a single dataset [125]. The 3D1 lifetime
directly determines the dynamic contribution to the strontium lattice clock blackbody ra-
diation shift [121], its currently largest systematic uncertainty [133]. This uncertainty
can be directly improved by a new direct measurement of τ1P1 in combination with our
results and Ref. [56].

Moreover, the precise measurement of αe(ωt) can be used to extract the 3P1-3S1 life-
time because this transition is the main contributor to the αe(ωt) (87%). With help of
M.S. Safronova and S.G. Porsev, we extracted τ3S113.92(11) ns. This precision of our cal-
culated value is an order of magnitude improvement compared to prior measurements
that ranged from 10.9(1.1) ns to 15.0(8) ns [134–136].

4.4 Conclusion

In this chapter, we presented detailed calculations of the tuneout wavelengths of g of
both fermionic and bosonic isotopes of Sr. We showed in particular how, even though
the hyperfine structure of 87Sr complicates the calculation, a light with small ellipticity
(2%) results in the the tune-out frequency of 87Sr and 87Sr being within ∼ 50 MHz of
each other. Implementing the state-dependent lattice in our simulator, we demonstrated
high-fidelity, state-dependent control of the strontium optical qubit. Combining our re-
sults with single-site addressing and control [137] removes the main obstacle for the
realization of quantum computation and quantum simulation schemes with two-electron
atoms [21], and opens the path to the simulation of new types of physical systems as
described in Section 2.7.
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Chapter 5

Cavity-enhanced two dimensional optical lattices

In this chapter, we discuss the extension of our experimental apparatus to support the
build-up cavities. With the extended setup, we demonstrate the largest 2D optical lat-
tices to date with a mode area close to 1 mm2 that can trap neutral atoms in both high-
and low-intensity lattice regimes. We achieve this mode area by generating the lattices
in optical cavities with large mode diameters to enhance optical power [41]. Notably,
this enhancement can be done at any wavelength of interest, even those for which the
available laser power is limited, while keeping the mode area constant, and our cavity
is coated for multiple wavelengths. We demonstrate the advantage of this flexibility by
creating our lattices at an unconventional wavelength of 914 nm such that our mode
area is more than an order of magnitude larger than what is possible in free space using
conventional setups and current laser technology. While other cavity-enhanced lattices
for similar purposes have been constructed in the past [138, 139, 93], our cavities have
a factor of 3.5 larger mode area than the largest cavity-enhanced lattices [93], while
achieving more than two orders of magnitude longer trap lifetime. Our cavity assembly
is a monolithic device that contains two independent perpendicular optical cavities that
cross at right angles, as shown in the photograph in Fig. 5.1(a), leading to a high degree
of mechanical and thermal stability. We will first briefly summarize the cavity’s mono-
lithic design and its integration into our vacuum system.

We characterize these cavity lattices by loading strontium atoms and performing clock
spectroscopy at a wavelength where the differential light shift of the clock states is large
in high-intensity lattices. We observe spatially dependent clock excitation with resolved
carrier and sideband transitions. These features let us directly map the lattice potential
envelope, shown in Fig. 5.1(b) and (c). With the measured potential, we quantify the
size and homogeneity of the created potential. Furthermore, we use these features to
measure local temperatures and the polarizability ratio between the two clock states
with high precision. Finally, the monolithic cavity design results in a long atom lifetime
in the cavity lattices and an excellent stability of the experimental setup.

5.1 Science chamber

The main and science chambers are connected by a pneumatic valve and bellow. We
attach a bellow in between to relieve any mechanical constrain between the two cham-
bers’ assemblies (in Fig. 3.2, the bellow is replaced by a nipple just for illustration). The
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Figure 5.1 (a) Photograph of the monolithic cavity assembly. The two-dimensional optical lattice
is formed at the intersection of the optical axes of both cavities. (b) From the mea-
sured potential envelope of the optical lattice, we confirm that each cavity supports a
fundamental TEM00 mode with 1/e2 waist of 489(8) µm at 914.3 nm. A Mott insula-
tor of strontium atoms created in an optical lattice with this potential envelope is ex-
pected to form in the shaded area, which has a diameter ∼125 µm. (c) Cross sections
through the experimental data corresponding to horizontal and vertical lines drawn in
panel (b). The details of (b) and (c) will be explained in Sect. 5.5.
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science chamber is a custom designed steel chamber whose design specifications are de-
scribed in [55]. Since the cavities are in vacuum and the quantum simulations will take
place in the science chamber, we put significant effort into designing the system to reach
an ultra high vacuum lower than in the MOT chamber. First of all, we put two ion and
non-evaporative-getter (NEG) combination pumps on each side of the science chamber.
In addition, we also coated the inside of the science chamber with NEG.

bake-out For the bake-out, we isolated the main chamber and science chambers as best
as possible by placingmetal walls in between the two sections as shown in Fig. 5.2(a). The
junctions between the walls were taped such that any small fiber glasses cannot travel to
the main chamber section. With this, we were able to bake the science chamber without
removing any of the existing optics. The bake-out procedure was not trivial due to the
presence of NEG pumps that activate at different temperatures. The NEG coating of the
science chamber can be activated starting from temperatures as low as 200 ◦C (although
a higher activation temperature is recommended) whereas the activation of the NEG on
the combination pumps heats the pumps as hot as 500 ◦C. Because both activations gen-
erate significant heat, which greatly increases pressure in the chamber, we wanted to
make sure that activating one does not saturate the other.

In next paragraphs, we explain in detail the bake-out procedure which led to a final
pressure that was below the operating range of the ion pressure gauge (< 5×10−11 mbar).
The pressure and temperature logs at each step is shown in Fig. 5.2.

À After the complete assembly, we first baked out the chamber at a low temperature
of at 120 ◦C for 2-3 days to get rid of water that deposited during the assembly
process. We chose this low temperature to not activate any of the NEG coatings.

Á After this initial bake-out, we lowered the temperature and confirmed that the pres-
sure is lower than before the bake-out. At this point, we measured a pressure of
3×10−10 mbar.

Â We degassed the ion pumps by turning them on and off several times. Surprisingly,
the degassing process increased the pressure by two orders of magnitude.

Ã After making sure the ion pumps are off, we began the next bake-out process to
activate the NEG coatings in the science chamber. Prior to the assembly, we had
tested the performance of the coating in a preparatory lab. At that time, we attached
blanks instead of viewports, and we activated the coating by heating the chamber
to 300 ◦C for 33 hrs. However, with the real assembly, we could not bake as high
due to the low heat load that the viewports can take. Therefore, we baked at 180 ◦C
but for the significantly longer duration of a week to ensure activation.

Ä After a week, we also activated the NEG coatings of the combination pumps. Acti-
vating these coatings takes only about an hour and, during the activation, the top
part of the pumps heats up to 500 ◦C. To make sure that this heat does not raise the
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Figure 5.2 Overview of the bakeout process. (a) Photograph of the science chamber being baked.
(b) Set temperature plot during the bake-out process. (c) Pressure inside the chamber
measured by an ion pressure gauge during the bake-out process. The numbering on the
plots corresponding to the baking steps listed in the above text.
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temperature of the whole chamber, we unwrap the heating tapes and aluminium
foils to let the top part cool down to 60 ◦C before the activation.

Å After degassing the ion pumps once more, we started the activation for an hour.

Æ Once the activation stopped and the top parts cooled down to ∼200 ◦C, we also
cooled down the rest of the heating.

Ç Then, we turned on the ion pumps and we had to manually change the output
voltage of the ion pumps from 7 kV to 3 kV using the controller as the pressure
dropped. At the end, we measured a pressure as low as 2×10−11 mbar; however, it
should be noted that the gauge’s minimum range is 5×10−11 mbar.

5.2 Crossed Cavities

In contrast to existing buildup cavities, we use a monolithic assembly that is both ther-
mally and mechanically stable, without any movable parts [41], as shown in Fig. 5.1(a).
In brief, we have optically contact two pairs of mirrors to an octagon-shaped spacer
made from ultra-low expansion glass, forming two cavities that overlap in the center
of the spacer. The spacer has bores with different diameters for optical access and high-
resolution imaging. By using an interferometric method [41], we have achieved a near-
perfect vertical overlap between the two modes.

After construction and characterization, the assembly was mounted in a stainless steel
vacuum chamber attached to the vacuum system [39]. In Fig. 5.3(a), we show this sci-
ence chamber featuring a pair of re-entrant viewports that allow high-resolution imaging
of the atomic sample. The octagon-shaped cavity assembly is mounted to the top view-
port in a stress-free manner [82] as sketched in the figure. After bake-out, we reach a
pressure below 3 × 10−11 mbar in the science chamber, demonstrating that the cavity
assembly is compatible with state-of-the-art ultra high vacuum chambers.

The cavity mirrors are optimized for quantum simulations with strontium atoms and
are highly reflective at several selected wavelengths [41]. In the remainder of this work,
we couple laser light at 914.3 nm into the cavities. At this wavelength, the finesse and
intracavity enhancement are 5025(58) and 1132(13), respectively [41]. By coupling a
moderate power of ∼80 mW into each arm, we create deep lattices with trap frequencies
of 116 kHz, corresponding to lattice depths of 60 µK. We optimize the mode-matching of
the input beams to each cavity’s fundamental transverse electric field mode (TEM00) to
∼99% [41].
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Figure 5.3 Overview of the experimental setup. (a) Cross section of the science chamber, which
includes a pair of re-entrant viewports (top left). The cavity assembly rests in a stain-
less steel cage attached to the top viewport (top right). A simplified cross section cut
of the cavity assembly and its mounting structure is shown at the bottom. (b) Simpli-
fied 88Sr energy diagram and optical transitions used in the experiment. (c) Sketch of
the laboratory and lattice coordinate frames and the relevant laser beams. 88Sr atoms
in the 1S0 (g) state are transported into the assembly and are loaded into a trap cre-
ated by the 914.3 nm cavity lattice beams and a light sheet at 813.4 nm. The laser
beam at 689.4 nm is used for direct sideband cooling, and the laser beam at 698 nm
drives the clock transition induced by a bias magnetic field B along z. (d) In-situ ab-
sorption image of g atoms in the combined trap of the lattices and light sheet (left).
On the right is an illustration showing the atoms occupying the lattice sites.
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5.3 Laser System

5.3.1 Ti:Sapphire laser

The cavity lattice beams at 914.332 nm are generated from a Ti:Sapphire laser. The out-
put of the laser is divided into four paths: a path for locking the laser’s frequency to a
pre-stabilization cavity, two paths for coupling into each cavity arm of the crossed cav-
ity assembly, and an optical heterodyne beat setup with a femtosecond optical frequency
comb. Locking the laser’s frequency to a pre-stabilization cavity with piezo-tunable length
allows us to keep the laser’s frequency close to the resonance frequencies of the crossed
cavities.

The length of the pre-stabilization cavity is actively stabilized by locking one of the res-
onance frequencies to the clock laser frequency with a Pound–Drever–Hall (PDH) lock.
The clock laser itself is frequency stabilized to an ultra-stable reference cavity with a fi-
nesse of ∼280000. Once the length of the pre-stabilization cavity is stabilized, we lock
the Ti:Sapphire laser’s frequency to another of its resonances via the PDH technique as
well. For this purpose, the error signal is fed back to a piezo attached to the Ti:Sapphire
laser’s bow-tie cavity mirrors.

The two beams that couple into the cavities are each frequency-shifted with separate
double-pass acousto-optic modulators (AOMs) and then fiber-coupled to the optical setup
for coupling into the cavities. The AOMs tune the frequency of each beam to the resonant
frequency for each cavity. To maintain the desired frequency for each beam, we again
use the PDH technique, and use the error signal to control the radio-frequency (rf) signal
driving the AOMs. The two cavity are separated in frequency by ∼60 MHz/FSR, where
FSR = c/2L = 3 GHz, where L = 50 mm is the cavity length and c is the speed of light.

During the experiments, we actively stabilize the intensity of the laser beams coupled
to the cavity. For this stabilization, we split off ∼1% of each beam’s power and send it
onto a photodiode. The photodiode signal is compared to a DC signal to create an error
signal which is then fed into a proportional-integral (PI) controller that actively controls
the amplitude of the rf signals of the double pass AOMs. With this locking scheme, we
control the intensity sent to the cavities. The input cavity beams can also be shut off
rapidly by turning off the rf power. Disabling the frequency and intensity locks of the
two cavity beams does not affect the frequency stability of the Ti:Sapphire laser, since its
frequency is pre-stabilized.

To characterize the laser noise, we measure the relative intensity noise (RIN) of the
laser under three different conditions: (1) when the laser frequency is locked only to
the pre-stabilization cavity, (2) as in (1) but with additional frequency stabilization to
the crossed cavities, and (3) the same as (2) but with intensity stabilization, where con-
ditions (2) and (3) are measured after the transmission through the crossed cavity. In
Fig. 5.4, we show such measurements for cavity 2. For comparison, we also measure the
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RIN of a commercial low-noise Nd:YAG laser.

Finally, the optical heterodyne beat of the Ti:Sapphire laser and the optical frequency
comb is used to monitor the absolute frequency of the laser. By simultaneously measur-
ing this frequency and the frequency of the double-pass AOMs that are used for locking,
we can determine the absolute frequencies of both crossed cavity modes used to trap the
atoms. We use this to measure the long-term stability of our experimental setup which
will be discussed later.

5.3.2 Transport laser setup

Once the atoms are cooled to few µK, we load them into an 1070 nm optical dipole trap
and transport them from the main to science chamber, where the cavities are located.
Since 1S0 atoms are non-magnetic, optical transport by moving the focus of the beam is
a natural choice rather using a magnetic field gradient. A traditional way of moving the
focus is achieved by mechanically moving the stage where the lens is mounted. However,
such a setup requires large spaces and a high degree mechanical stability of the moving
parts. Instead, recently, an alternative choice of using a focus tunable lens was demon-
strated in [140]. The details behind the working principle of the lens can easily found
from company Optotune. In short, by applying electric current, one can tune the focal
length of the lens. Therefore, the optical transport can be achieved in a compact setup
without any moving parts.

As far as we are aware, there have not been any experiments involving optical transport
of strontium. Therefore, we initially devised a setup that is optimal for loading a high
number of 87Sr and 88Sr atoms. Unfortunately, we encountered several problems when
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implementing the setup experimentally, and we reverted to a much simpler setup. The
simpler setup is far from being optimal in terms of the mode matching between the red
MOT and the dipole trap, thus we believe it is worthwhile to discuss our initial setup and
the problems we encountered for future considerations.

Initial setup

To optimize the loading to the dipole trap, we ideally would like to start with a dipole
beam that matches the dimensions of the optimized red MOT. Unfortunately, the red
MOT of 88Sr and 87Sr have very different shapes. The red MOT of 88Sr sags along grav-
ity, producing a pancake shaped MOT that is vertically compressed. The aspect ratio of
the vertical and horizontal axes can be as large as 1:20 depending on a magnetic field
gradient and laser detuning. On the other hand, the red MOT of 87Sr does not sag and
occupies a volume of an ellipsoid. For this case, the typical aspect ratio is 1:2. Therefore,
we planned for a dipole beam setup where the beam aspect ratio can be smoothly varied.
Wewould start with an elliptical beamwhose aspect ratio can be expanded up to 1:20 and
smoothly changed to 1:1. For the transport, it is important to achieve a constant beam
waist throughout the transport distance. In addition to this requirement, we wanted a
flexible setup where we can also vary the waist of the beam.

To achieve all aforementioned requirements, we devised a setup that consists of an
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acousto-optic deflector (AOD), a telescope consisting of a focus tunable lens pair, another
tunable lens with negative focal length, and a final focusing lens. Scanning the beam’s
frequency with AOD achieves a high aspect ratio of the beam, and the tunable telescope
and tunable negative focal lens together allow us to displace the beam while keeping the
waist the same at all distances. Moreover, by changing the magnification of the tunable
telescope, the beam size can be tuned as desired. For our purpose, we were interested in
the waist in range of 50− 100 µm.

thermal lensing The main difficulty that we had with the initial setup was thermal lens-
ing that started around the beam power of 3 W. The beam arrives at the first tunable
lens setup has a 1/e2 waist of 430 µm, and the tunable lens has a clear aperture diameter
of 10 mm.

Final setup

To avoid the thermal lensing, we changed our setup to a simpler setup shown in Fig. ??.
The beam is first expanded by a ×4 telescope before reaching the negative focal length
tunable focus lens. This reduces the intensity by a factor of 16 compared to our previous
setup. Also, this tunable lens has a larger clear aperture diameter of 16 mm. Then, the
beam is focused on to the atoms by the last lens which has a focus of 250 mm. This
design with a single tunable lens does not allow independent control of the waist and
distance. Therefore, the waist changes as a function of distance. We found that for our
particular lens choices which produce a beam with a waist of ∼50 µm, the deviation of
the beam waist is smaller 10 %. However, while running experiments, we realized that
the thermal stability of the lens leads a long term drift of atom number as the lens heats.
For this reason, we keep the lens at steady-state temperature by always applying a certain
amount of current to the lens.

Future upgrade

Due to a low axial trap frequency of the transport beam ∼1 Hz, the transport time is
∼10 s. To fix this problem, we plan for a moving lattice setup with which one of the
lattice beam’s focus moves via a tunable lens along with the lattice during the transport
to hold the atoms against gravity. This idea has not been implemented for the work
of this thesis, yet has been successfully implemented recently, reducing the cycle time
significantly.

5.4 Experimental sequence

To benchmark the performance of our optical lattice setup, we prepare strontium atoms
in the vibrational ground states of the deep cavity lattices.
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5.4.1 Optical transport

We begin by preparing 88Sr atoms using a robust and rapid magneto-optical trap [39]
that operates on the narrow 1S0-3P1 transition, shown in Fig. 5.3(b). Subsequently, we
transport the atoms into the center of the cavity assembly by moving the focus of an
optical dipole trap beam at 1070 nm [140]. The beam propagates along the x axis as
shown in Fig. 5.3(c), has a 1/e2 beam waist of 50 µm, and has a gravity-compensated
trap depth of kB× 45 µK where kB is the Boltzmann constant. During the transport,
atoms spread axially over a few mm due to the weak axial confinement of the transport
beam, and the temperature of the atomic cloud rises to ∼7 µK.

5.4.2 Crossed dipole trap

After the transport, we perform narrow-line Doppler cooling in a crossed dipole trap.
The crossed dipole trap is created by overlapping the 1070-nm-transport beam and a
light sheet at 813.4 nm, as sketched in Fig. 5.3(c). The elliptical light sheet has a 1/e2

beamwaist of 400 µm (13 µm) along the x (z) axis with a gravity compensated trap depth
of 5 µK, corresponding to trap frequencies of (20, 5, 500) Hz along the (x, y, z) axes.
Subsequently, the transport beam is turned off, and we let the atomic cloud expand in
the light sheet.

To adiabatically load the atoms into the cavity lattices sketched in Fig. 5.3(c), we lin-
early ramp up the intensity of the cavity beams to a lattice depth (frequency) of 60 µK
(116 kHz). Here, the lattice depth refers to a horizontal modulation depth assuming an
infinitely extended 1D lattice where the lattice trap frequency νt and modulation depth
V are related by νt/νred = 2

√
V/hνrec, where νrec = h/2Mλ2 is the lattice recoil fre-

quency for an atom of massM , and λ is the lattice wavelength. At this point, the atoms
are trapped in the potential created by the sheet and cavity beams. The cavity beams
by themselves would produce deep lattices horizontally, but produce a relatively weak
dipole trap vertically with a trap frequency of ∼50 Hz. Therefore, having the sheet beam
that intersects the lattice beams approximately at the minimum of the gravity-adjusted
lattice potential provides a tighter confinement along z as shown in the vertical potential
in Fig. 5.6(a).

After loading the atoms into the lattices, we cool the atoms to the vibrational ground
band using sideband cooling on the 1S0-3P1 transition [87, 70], where the 689.4 nm cool-
ing beam propagates horizontally at 45◦ to the lattice axes, as sketched in Fig. 5.3(c).
Then, we ramp down the lattice power after sideband cooling to drop the atoms that
are trapped only by the lattices but not by the light sheet, and we ramp up the lattices
back. We measure in-trap density profiles with in-situ absorption imaging along z [39].
In Fig. 5.3(d), we show a typical absorption image. We use a large field of view and low
resolution imaging with 5.40(8) µm per pixel to image the large atomic distribution and
do not resolve the lattice structure. Based on the optical density, we expect an average
atom number of ∼1 per lattice site at the center of the trap.
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Figure 5.6 Spatially dependent clock spectroscopy in non-magic lattices. (a) Dynamic dipole
polarizabilities of g and e states (top). At the light sheet wavelength of 813.4 nm, g
and e have the same polarizability (magic condition). In contrast, at the cavity lattice
wavelength of 914.3 nm, e experiences a polarizability reduced by 15 % compared to g
(non-magic condition). For this reason, the light sheet creates identical traps for g and
e, while the cavity beams create a slightly stronger potential for g than for e. Vertical
and horizontal cuts through the trapping potential created by the light sheet and cavity
lattice are sketched below (polarizability difference between g and e is exaggerated for
a clear illustration). (b) In-situ absorption images after probing the clock transition at
different detunings indicated by the black arrows. The differential ac-Stark shifts of the
non-magic cavity lattices allow local addressing, leading to ring structures that map the
lattice envelope.

5.4.3 88Sr clock excitation

We take advantage of the ultra-narrow clock transition between 1S0 (g) and 3P0 (e) of
strontium, shown in Fig. 5.3(b), to perform high resolution spectroscopy. Unlike in the
fermionic isotope 87Sr, where the clock transition is weakly electric-dipole-allowed [71]
with a linewidth of 1.35(3) mHz [54], accessing the transition of the bosonic isotope 88Sr
requires an external magnetic field [72]. Despite this, we use 88Sr, because of its high
natural abundance and simple electronic structure, which leads to simpler spectroscopic
features.

To perform clock spectroscopy, we merge a 698 nm clock probe beam into the same
optical path as the 689.4 nm sideband cooling beam, as sketched in Fig. 5.3(c). We apply
clock laser light for ∼600 ms and a bias magnetic field of ∼45 G parallel to z, unless
specified otherwise. The clock probe beam has a 1/e2 waist of ∼285 µm and a power of
21 mW, where the waist was calibrated as in Ref. [40].

The cavity lattices are created at a wavelength of 914.332 nm. At this wavelength, the
differential polarizability of the clock states αg − αe is ' 0.15αg, as evident from the
polarizability plots of g and e shown in Fig. 5.6(a). Here, αk specifies the polarizability
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of a state k. The differential light shift is proportional to the light intensity and the differ-
ential polarizability. As a result, the clock transition frequency shifts, and the magnitude
of the shift varies as a function of lattice intensity. Lattices in which the two clock states
experience different light shifts are called non-magic. In contrast, we intentionally make
the light sheet operate at the magic wavelength of 813.4 nm, such that it does not shift
the transition. Therefore, the local clock shift only originates from the cavity beams. The
trapping potential for g and e created by the cavity beams and light sheet is illustrated in
Fig. 5.6(a), where the illustration includes the effect of gravity. In the vertical potential
cut, we see a dimple created by the 813.4 nm sheet, and its trap depth is identical for both
g and e. The horizontal potential cut is dominated by the cavity beams, and e experiences
a weaker lattice depth than g. Therefore, we see that only the cavity lattices determine
the differential light shift in the horizontal plane.

We model the cavity light intensity as the sum of two orthogonal TEM00 Gaussian
beams with 1/e2 waist w. We have assumed that the waist of both cavity modes is the
same because the two cavities are constructed in the same way [41]. We also assume that
the waist stays constant over the area of our interest, which is valid because of the long
Rayleigh length of the beams, zR ∼ 80 cm. When the clock laser frequency is tuned close
to the maximum differential ac-Stark shift, we excite g atoms in the center as illustrated
in Fig. 5.6(b). In contrast, when the laser is red detuned from the maximum, we excite g
to e in an equipotential region. This region takes the shape of a ring, reflecting the spa-
tial cross section of the light intensity. Taking such cross sections at different detunings
enables us to map out the lattice trap envelope created by the cavity beams.

In our experiments, the clock excitation dynamics are susceptible to two decoherence
mechanisms due to elastic e-g collisions and fast inelastic e-e collisions in 88Sr [141]. The
elastic collisions reset the coherence between g and e, but the population stays constant.
In contrast, inelastic collisions cause atom loss.

To distinguish between the two effects, we use a detection scheme that can image
both g and e atoms separately. To image the in-trap density of g atoms, we use absorp-
tion imaging on the 1S0-1P1 transition [39] as already explained in the main text. To
image e atoms, we remove g atoms by applying light resonant with the 1S0-1P1 transition
and repump e back to g by applying 679 nm and 707 nm laser light resonant with the
3P0-3S1 and 3P2-3S1 transitions, respectively [141].

Using the above method, we excite atoms in the center of the lattices and take g and e
images at different clock excitation durations. From these measurements, we study how
the total atom number, i.e. Ng+Ne, and the excitation fraction, i.e. Ne/(Ng+Ne), evolve
as a function of the clock excitation duration, where Ns specifies the number of atoms in
state s. Since we work with non-magic lattices and an imaging resolution of 5.40(8) µm,
the excited state fraction derived from each pixel is averaged over many different clock
laser detunings. For this reason, we study the clock excitation dynamics at the center of
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Figure 5.7 Clock excitation dynamics. Total atom number Ng + Ne normalized to the initial total
atom number N0 (top) and excited fraction (bottom) as a function of clock excitation
duration. The inset is a zoomed-in portion of the initial excitation fraction dynamics.
The measurements are repeated an external magnetic field at ∼45 G (triangles) and
∼225 G (circles). The solid lines are fit to the exponential rise and decay functions.

the lattices, where the lattice envelope is flattest. The results obtained from averaging
the central four pixels are plotted in Fig. 5.7, where we have repeated the measurement
at two different magnetic fields, 45 G and 225 G, respectively. Following Ref. [72], the
different magnetic field values proportionally scale the Rabi frequency Ω [72]. Therefore,
we have rescaled the clock laser duration according to the strength of the magnetic field.

We observe a decay of the total number of atoms as shown in the bottom of Fig. 5.7,
which is expected due to the inelastic e-e collisions [141]. At the center of the atomic
cloud, we estimate∼1 atom per lattice site on average from the in-situ images. Assuming
a Poisson distribution and excluding the empty lattice sites, we expect that ∼40 % of the
lattice sites are occupied by more than one atom. Therefore, the clock spectroscopy in
our setup is susceptible to atom loss. Here, this loss is advantageous in characterizing
the potential, because it enhances the signal-to-noise ratio of the ground state depletion
images used for the technique. From the data shown in Fig. 5.7, we expect that the 40 %
of the atoms lost from the trap and 60 % of the e atoms.

From the dynamics of the excited state fractions shown in Fig. 5.7 (top), we observe an
exponential rise to a steady-state value, which resembles strongly dephased Rabi dynam-
ics. At a high magnetic field of 225 G at which we expect Ω ∼ 2π×500 Hz, we observe
clear Rabi oscillations that quickly dephase as shown in the inset of Fig. 5.7 (top). Beside
elastic collisions, there are several other mechanisms that can cause dephasing in our ex-
periments, such as misalignment of the clock probe beam [73], the clock laser linewidth,
the clock and lattice laser intensity noise, and the effect of averaging several pixels where



Chapter 5 Cavity-enhanced two dimensional optical lattices 93

each pixel contains contributions from many clock laser detunings. Among these possi-
bilities, our estimates show that the lattice intensity fluctuations are the most dominant
dephasing mechanism. At a differential ac-Stark shift of ∼400 kHz, a fractional lattice
intensity stability of ∼10−3 causes inhomogeneity in δ of 400 Hz, which is already on the
order of 2π × Ω at 225 G. Our setup is particularly susceptible to lattice intensity noise
because the techniques described in the main text rely on a large differential ac-Stark
shift. Such susceptibility to the lattice intensity noise can be removed by creating the
lattices at the magic wavelength.

5.5 Characterizing the Lattice Envelope

We use the measured equipotential surfaces to characterize the waist and homogeneity
of the potential. At each clock laser detuning δ, we take two absorption images, one with-
out clock excitation, ODbg, and one with clock excitation, ODclk. From these two images,
we extract a normalized difference image, (ODbg-ODclk)/ODbg, and reconstruct the po-
tential map as illustrated in Fig. 5.8(a). This post-processed image reflects the fraction of
g atoms that have been depleted by the clock excitation. Here, the depleted atoms include
both those atoms that are still in e at the time of imaging and those that have been lost
from the trap after the excitation due to inelastic excited state collisions [141, 142]. We
use this post-processed image representing the depleted ground state fraction for further
analysis to eliminate possible systematic errors originating from the initial density distri-
bution.

From a series of post-processed images taken at different detunings δ, we determine
each pixel’s resonant detuning δres, which is proportional to the lattice envelope aver-
aged over each pixel. Example traces of a pixel’s fractional depleted g atoms are shown
in Fig. 5.8(b). Each trace is individually fitted to a Lorentzian lineshape to extract δres
for its pixel. The distribution of the reduced χ2 of all the fits is centered around 0.9, and
the statistical errors on δres from the fits is ∼100 Hz. The image of δres maps the shape
of the potential and is shown in Fig. 5.8(c). The variation of the potential depth across
the whole image is ∼10 % of the total ac-Stark shift, since we only load atoms into the
central lattice region.

To quantify the waist and deviation of the measured δres from the expected values, we
fit the image of δres to a fit function that models the potential given by the superposition
of two orthogonal TEM00 cavity modes. The details of the fit function and fit parameters
are described in Appendix. We perform a weighted least squares fit and obtain a cav-
ity mode waist of 489(8) µm, where the uncertainty arises mostly from the uncertainty
in the image system magnification. Although the fit captures the global Gaussian shape
well, the residuals reveal that there are additional fringes shown in Fig. 5.8(d). Since the
peak-to-peak amplitude of the most dominant fringe (∼3 kHz) is an order of magnitude
larger than the error on the δres estimates (∼100 Hz), the fringes are well resolved. The
statistical uncertainties show that our method can resolve structures as small as 300 ppm
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of the total ac-Stark shift. Due to the additional inhomogeneous fringes, the reduced χ2

of the lattice envelope fit to the δres data is ∼5, and the histogram of residuals shows an
asymmetric distribution shown at the top right of Fig. 5.8(d).

We observe that the inhomogeneous fringes are well aligned with the cavity axes, and
that they are more pronounced along the x2 axis. To determine the frequencies of the
fringes, we perform the 2D Fourier transform of the residuals, where the region outside
of the circle (Fig. 5.8(d)) was zero-padded. The result shown at the bottom right of
Fig. 5.8(d) reveals a factor of three larger fringe amplitude along x2 compared to x1,
peaking at a fringe wavelength of ∼65 µm. Despite the different magnitudes, the Fourier
transform shows similar spatial frequency components along both axes. This similarity
in the frequency components strongly suggests that a common mechanism causes the
fringes along both axes.

The presence of these fringes is surprising, since the mode-cleaning effect of the cavi-
ties is expected to lead to a very clean potential. The first obvious question is whether the
fringes are truly present in the optical potential. We consider three possible scenarios in
which the cavity modes can have such fringes: (1) defects or dust particles on the cavity
mirrors, (2) leakage of higher order modes from imperfect input coupling [41], and (3)
mode mixing due to imperfect cavity mirror surfaces. Based on the fringe frequencies
we observe, we conclude that a dust particle attached to a mirror surface would have to
be present about ∼350 µm away from the mirror’s center. However, our estimates show
that a dust particle that incoherently scatters light into a solid angle of 2π would have
to scatter tens of percent of the circulating power. Such a large scattering should have
resulted in a very different cavity finesse compared to our in-situ measurements showing
that both cavity finesses agree within 10 %. Moreover, explaining the fringe spacing by
a significant contribution of an imperfect coupling and mode mixing requires mixing a
TEM0m mode with m ∼ 100. Therefore, we conclude that all three scenarios are highly
unlikely. Other possible explanations include superradiant scattering of atoms in the cav-
ity lattices or diffraction of the imaging beam from the periodic atom distribution. De-
termining whether the fringes are present in the cavity lattices or whether they originate
from the artifacts of the method requires further investigation via other methods such as
site-resolved fluorescence imaging. For the remainder of this work, we assume that the
fringes are present in the potential and base our estimates on this worst-case assumption.

To our knowledge, we have created the largest far-off resonant 2D optical lattices for
trapping ultracold atoms. Our cavity mode waists are more than five times larger than
what can be created using the most powerful laser available at this wavelength while
preserving the lattice depth, resulting in more than an order of magnitude improvement
on the number of available lattice sites. From the measured intensity profile, we estimate
an achievable Mott insulator size for the fermionic isotope 87Sr, which has more suitable
scattering properties than the bosonic isotope 88Sr. For our estimates, we assume that
the inhomogeneous fringes are also present in the cavity lattices. In two dimensions, the



Chapter 5 Cavity-enhanced two dimensional optical lattices 95

(a) (b)

(c) (d)

-100
0

-100
0

100 100

δ 
(k

H
z)

408

374

pixel ipixel j

=

-

x (μm) y (μm)

374 δ j
resδ i

res 414

δ (kHz) 

0.0

0.7

De
pl

et
ed

 g
ro

un
d

st
at

e 
at

om
 fr

ac
tio

n

pixel i
pixel j

376 408

δres (kHz)

0

0

270

270

(5.4 μm)2
per pixel

x1x2

x (μm)

y 
(μ

m
)

-25 25fx (1/mm)

f y 
(1

/m
m

)

-2.5 0 2.5-2 +2

Residuals (kHz)

Residuals (kHz)

-25

25
0 1

Figure 5.8 Lattice envelope characterization. (a) Envelope of the lattice potential reconstructed
by stacking the images of depleted g fractions obtained at different clock laser de-
tunings δ (left). To obtain these images, we take an image with (ODclk) and with-
out (ODbg) clock excitations. For each detuning, we calculate the depleted g fraction
(ODbg-ODclk)/ODbg (right). (b) For every pixel, we plot the depleted g fraction as a
function of detuning δ and extract the peak frequency δres with a Lorentzian fit (solid
lines). (c) Resulting image of δres for every pixel in panel (a). The cavity axes are la-
belled as x1 and x2. (d) When fitting the potential envelope predicted by ideal TEM00
modes to the data in Panel (c), we find fit residuals showing fringe patterns coaligned
with the lattice axes. A histogram (peak-normalized spatial Fourier transform) of the
residuals is shown in the top (bottom) right. The black contour line on the image
of residuals shows the expected Mott-insulator shape, based on the envelope data in
Panel (c). The resulting shape is shown as the shaded region in Fig. 5.1(b).
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interaction energy U required to form a Mott insulator is approximately 8t, where t is
the tunneling rate [14]. For a fixed scattering length, the lattice depth can be tuned to
satisfy the condition mentioned above. At a typical depth of ∼10 hνrec, a Mott insulator
forms within the region where the energy shift due to the lattice envelope is smaller than
the interaction energy between two atoms. We find that the peak-to-peak amplitude of
the fringes is three times smaller than the interaction energy, which is ∼700 Hz for 87Sr.
Therefore, we expect a homogeneous Mott insulator extending up to the boundary set
by the interaction energy. The fringes cause small distortions of the Mott insulator shape,
as shown in Fig. 5.8(d). However, our results show that the size would not significantly
differ from the ideal size created with perfectly homogeneous lattices.

From these estimates which are detailed in Section 2.5, we expect that the Mott in-
sulator state will occupy a region with a diameter of D ' 125 µm at a wavelength λ =
914.3 nm. This diameter corresponds to N ' π(D/λ)2 ' 6 × 104 lattice sites. The area
of the region does not vary much as a function of wavelength λ, although the number
of sites changes quadratically due to the change in lattice spacing. For this reason, our
cavity assembly offers a solution to create large Mott insulators at any wavelength of
interest [40, 94] supported by the cavity mirrors where the laser power is limited.

5.6 Local clock spectroscopy in non-magic lattices

In the previous Section, the discussion focused on driving the most dominant carrier tran-
sition between the lowest vibrational states of the g and e lattices. The carrier spectrum
discussed in Fig. ??(b) was modeled with a Lorentzian function. However, the spectrum
can become more complex when transitions between higher vibrational states are consid-
ered. We nowmake use of the high spectral resolution of the clock laser to resolve spectral
transitions between such higher vibrational states. This new capability enables us to pre-
cisely determine the polarizability ratio of the clock states without having to calibrate the
lattice intensities. This ratio is an important quantity that determines the magnitude of
the differential light shift and can be used to calibrate state-of-the-art atomic structure
calculations [40]. Moreover, we find that we can use this method to locally measure tem-
perature with a spatial resolution only limited by the imaging optics.
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images of the hot sample as a function detuning. (e) Polarizability ratio and weighted histogram. (f) Temperature maps of cold
(left) and hot (right) samples with weighted histograms.
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In Section 2.4, we have discussed the absorption spectrum in a 1D magic lattice. The
spectrum becomes more complex in a non-magic lattice, where the trap potential is state-
dependent. Thus, the trap frequencies of g and e lattices are different, and we use νst to
denote the trap frequency of state s. In this case, the carrier transitions are no longer
degenerate, but are split by νet − ν

g
t according to Eqn. (2.24). Moreover, the first blue

sideband is detuned by νet −νrec from the carrier transition of the lowest vibrational state.

In 2D, the vibrational levels are labelled by two independent vibrational numbers n1
and n2, each corresponding to a vibrational band of one of the lattices. Since the two
lattices are orthogonal and do not interfere, the energy spectrum is given by En1 + En2 .
For simplicity, we consider the case when both lattices have an equal intensity (or depth),
I = I1 = I2. In this case, the carrier transitions split according to the total vibrational
number nT = n1 +n2 of the states involved. Therefore, each carrier transition is (nT+1)-
fold degenerate. An example of a coarse scan over the clock excitation spectrum for
νet∼77 kHz in our non-magic 2D lattices is shown in Fig. 5.9(a).

We work in a resolved carrier regime that has not been previously explored. The fre-
quency splitting between the two neighboring carrier transitions is (νgt −νet ) ∝

√
I(√αe−√

αg). To maximize the splitting, we increase νet to ∼109 kHz, and take a high-resolution
spectrum, zooming into the carrier transitions as shown in the left part of Fig. 5.9(b). We
observe up to three different carrier transitions, of which the one from the lowest vibra-
tional state is the most blue-detuned. The amplitude of the three peaks becomes more
comparable when we intentionally heat the sample by applying a beam resonant with
the 1S0-3P1 transition as shown in the right part of Fig. 5.9(b). As we decrease the lattice
depth linearly, we observe that the splitting reduces quadratically as expected. Similar
to the carrier transitions, the first blue sideband transitions split as well. However, here
we focus on the first blue sideband of the lowest vibrational state, which is shown in
Fig. 5.9(c).

The splitting of the carrier transitions is clearly visible in the ground state images as
well. As described in the previous Section, we excite atoms in a ring shape, reflecting the
equipotential surfaces of the cavity lattice envelope. When we increase the population of
the higher vibrational states by heating the sample, we see additional smaller rings ap-
pearing in Fig. 5.9(d). Each ring results from driving the carrier transitions from different
vibrational states, which are resonant at different locations. Similar to what we have seen
in the previous Section, all three rings move inward as the detuning increases due to the
spatially dependent ac-Stark shift. The dominant carrier transition, which involves the
lowest vibrational states, arrives at the center last because it is the most blue-detuned
transition. Moreover, the spacing between two neighboring rings increases as the rings
approach the center since the potential becomes flatter.

With the resolved carrier and blue-sideband spectrum, we first extract the polarizabil-
ity ratio αg/αe, which is one of the parameters that determine the magnitude of the
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differential ac-Stark shift. Since αk ∝ νkt , the polarizability ratio αg/αe = (νgt /νet )2. To
measure νet and νgt , we use an analysis method similar to the one used in the previous
Section. For every two-by-two averaged pixel, we determine the frequency difference
between the lowest carrier and first blue sideband peaks, which is νet − νrec. To measure
νgt , we heat the sample to better observe the different carrier peaks. For each spectrum of
the averaged pixel, we fit a three peak Lorentzian function with the frequency difference
between the peaks constrained to be the same. From the fit, we determine the frequency
splitting ∆δ between the carriers for each averaged pixel, and combine this value with
νet to obtain νgt for every pixel, νgt = νet + ∆δ. The error bars of the parameter estimates
from the fits are rescaled according to the reduced χ2 of the fits to compensate for the
non-Gaussian noise of the absorption images.

In Fig. 5.9(e), we show the polarizability ratio estimated from the pixel-to-pixel νg and
νe maps. The weighted mean of the ratio αg/αe = 1.1885± (3×10−4)stat ± (1×10−3)sys,
which is in good agreement with the theory described in Appendix B. The systematic un-
certainty arises from the experimental drifts between the hot and cold data sets that are
used to extract νe and ∆δ, respectively. This uncertainty can be greatly reduced by fur-
ther minimizing the elapsed time between the data sets. The variance of the ratio across
the sample can be explained by the variance of each pixel because the reduced χ2 is 1.14.
Therefore, we conclude that we do not observe a systematic variation of the ratio across
the sample. Our method provides improved robustness compared to a similar method
explored in Ref. [143] because we can make use of the resolved carrier spectrum com-
bined with spectral imaging.

Finally, we extract the local temperatures of the sample using the carrier spectrum. In
the temperature regime that we are considering, the vibrational populations are Boltzmann-
distributed. In this case, the temperature T can be estimated by measuring the relative
population p0/p1 of the first two non-degenerate levels and the energy spacing between
them, using kBT = h(νgt −νrec)/ln(2p0/p1). We estimate νgt −νrec for each pixel using the
same method as described above. Next, we use a hotter sample and determine the peak
locations and amplitudes by fitting a three-peak Lorentzian function with equal frequency
difference between the peaks to each averaged pixel, and we compare the amplitudes of
the two most blue-detuned carrier peaks to estimate p1/p0. For the colder sample, we
repeat the same procedure but keep the peak locations fixed to those determined from
the hotter sample.

The extracted temperature maps and weighted histograms are shown in Fig. ??(e). We
clearly observe a temperature difference between the cold and hot samples at 2.25(2) µK
and 4.21(3) µK, respectively. The temperature variation across the samples are within
the temperature uncertainty of each pixel because the reduced χ2 is 1.01 and 1.2 for cold
and hot samples, respectively. The temperatures of the cold sample correspond to ∼80%
vibrational ground state fraction.
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Figure 5.10 Lifetime in the cavity lattices. (a) Resolved carrier spectra in the cavity lattices at a
trap depth (frequency) of 457 Erec(116 kHz). The spectrum on top (bottom) was
taken after holding atoms for 1 s (15 s) in the lattices. We extract a 1/e lattice
ground band lifetime of ∼18(3) s. (b) Number of g atoms as a function of lattice
hold time. We extract an overall 1/e trap lifetime of 59(2) s. (c) Estimated ground
band lifetime as a function of lattice depth. The estimation was performed by rescal-
ing the relative intensity noise (RIN) of a Ti:Sapphire laser transmitted through cavity
2. For reference, we show the same estimates obtained from the RIN of the cavity
input light and the RIN of a highly intensity-stable Nd:YAG laser.

Our local thermometry assumes that the induced atom losses during the clock exci-
tation do not influence the temperature estimates. This assumption is corroborated by
repeating the temperaturemeasurements with shorter clock excitation durations and neg-
ligible loss, where we did not observe temperature differences. The thermometry tech-
nique based on the carrier spectrum has been proven to be more precise than methods
based on time-of-flight or sideband spectrum due to its high signal-to-noise ratio [143,
144]. We have improved the technique’s robustness by resolving the carriers and ex-
tended it to probe local temperatures. When combined with higher numerical aperture
imaging, this technique will open opportunities to spectroscopically measure motional
band populations with single-site resolution.



Chapter 5 Cavity-enhanced two dimensional optical lattices 101

5.7 Lifetime

In optical traps, heating induces excitation to higher motional bands, leading to motional
state decoherence and subsequent atom loss. To characterize the heating sources in our
setup, we measure the lifetimes of the ground band population and the overall lifetime
of atoms trapped in the cavity lattices.

We characterize the ground band lifetime using the resolved carrier spectrum tech-
nique presented in the previous section. This technique offers a new way to probe the
motional ground band populations in the high-lattice-depth regime with high signal-to-
noise. In Fig. 5.10(a), we take two carrier spectra after holding the atoms in the lattices at
a modulation depth (frequency) of 457 Erec (116 kHz) for 1 s and for 15 s. By comparing
the populations in the ground band at these times and assuming an exponential heating
rate, we extract a ground band lifetime of 18(3) s, which is comparable to state-of-the-art
free space lattice experiments [53] at similar depths in units of the recoil energy.

In addition to the ground band lifetime, we also measure the overall trap lifetime at
the same lattice modulation depth. The overall trap lifetime serves as a good bench-
mark to compare with other setups where the ground band lifetime is not accessible. In
Fig. 5.10(b), we show the number of g atoms trapped in the cavity lattices and light sheet
as a function of the trap hold time, and we extract a trap 1/e lifetime of 59(2) s.

The heating mechanisms in optical traps include collisions with background gas, in-
coherent scattering of trap light, and laser-noise-induced heating [53]. Based on the
longest trap lifetime we have measured, we project a vacuum limited lifetime >180 s.
The expected lifetime due to incoherent light scattering is also more than two orders
of magnitude longer than the observed ground-band lifetime, leaving laser noise as the
main source of heating. Moreover, we observe that the lifetime changes depending on
the parameters of the laser’s intensity and frequency stabilization control loops.

Laser-noise-induced heating arises due to laser beam intensity and pointing fluctua-
tions. In deep optical lattices, where each lattice site can be approximated as a harmonic
trap, the laser intensity (pointing) noise power spectral density at 2νt (νt) causes para-
metric heating [126] that results in transitions between lattice bands that are two (one)
motional quanta apart. In traps enhanced by optical cavities, we expect the intensity fluc-
tuations to dominate for two reasons. First, heating from pointing fluctuations is strongly
suppressed due to the resonator’s mechanical stability [145]. Second, locking a laser to
a cavity resonance converts laser frequency noise into amplitude noise, increasing the
latter beyond that in free-space optical lattices [97]. Thus, we focus on the relative inten-
sity noise (RIN) of the laser transmitted by the cavities. Combining the RIN and ground
band lifetime measurements, we estimate expected lifetimes for different lattice depths
as shown in Fig. 5.10(c). Here, we use the parametric heating rate ∝ ν2

t S(2νt) to scale
the lifetimes to the measurement shown in Fig 5.10(a), based on the model in Ref. [53].
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Figure 5.11 Stability of the cavity lattices (a) Cavity resonance frequency change ∆f as a func-
tion of time for both cavities. At t = 0, we couple the laser beams into the cavities,
which create a circulating power of ∼92 W per cavity. We see a rapid initial decrease
of 6 MHz, which corresponds to an expansion of the cavity length by 1 nm. Then,
∆f settles and fluctuates with a peak-to-peak amplitude of ∼2 MHz. Inset: ∆f as
a function of circulating power for caivty 1 (squares) and 2 (circles). Here, ∆f is ex-
tracted by fitting the trace of the first hour to an exponential function. (b) Fractional
intensity variation of the cavity transmission plotted as a function of time.

However, based on the rescaled RIN of the transmission, we conclude that the ground
band lifetime will be vacuum-limited in most regions, even at wavelengths where very
low noise non-planar-ring oscillator [146] lasers are not available.

5.8 Long-term Stability

Finally, we characterize the long-term frequency and intensity stability of the lattice
beams. In our setup, the lattice laser is stabilized to a resonant frequency of the cavity,
which slowly changes as the cavity shrinks or expands. Since we do not actively stabilize
the cavity length, any length change directly influences the laser frequency. Although we
actively stabilize the input beam power before coupling it into the cavity, we do not ad-
ditionally stabilize the power of the transmitted light. Therefore, the beam power inside
the cavity is susceptible to mechanical drifts of the incoupling optical components and
the performance of the input intensity servo. In this Section, we quantify the frequency
and intensity drifts of our setup and discuss the consequences for optical lattice clocks
and quantum simulators using our cavity lattices.

To estimate the laser frequency drift due to the cavity length change, we continuously
measure two parameters: (i) the laser frequency by beating it with a femtosecond optical
frequency comb and (ii) the frequency of the double-pass AOM used to stabilize the laser
to the cavity resonance frequency. By subtracting the two numbers, we obtain the cav-
ity’s resonance frequency drift independently of the laser frequency drift. In Fig. 5.11(a),
we plot the change of the resonance frequencies for both cavities as a function of time,
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starting with the moment we couple light into the cavities. We use a circulating power
of ∼92 W in each cavity, matching the conditions of the previous measurements. Within
the first hour, we observe a rapid decrease in the resonance frequency of ∼6 MHz. Sub-
sequently, the resonance frequencies settle but fluctuate with a peak-to-peak amplitude
of ∼2 MHz.

The decrease by 6 MHz corresponds to a cavity expansion of 1 nm compared to the
nominal cavity length of 50 mm. When repeating this measurement at different power
levels, we see that the expansion reduces proportionally (see inset). We conclude that
the cavity mirrors scatter and absorb part of the circulating light due to the cavity mirror
losses, which are ∼100 ppm based on our finesse and transmission measurements. These
losses deposit heat on the cavity which therefore expands. We attribute the fluctuations
on the long time scales to slow environmental temperature changes, which could be fur-
ther reduced by stabilizing the temperature of the vacuum chamber.

We use the measured resonance stability to estimate a lower bound of the accuracy of
an optical lattice clock based on our cavities. Compared to cavities that are tunable in
length [145, 93, 147, 148, 138], we will have to overcome the obstacle of constructing
a fully monolithic cavity with resonances as close to the magic wavelength as possible.
This problem could be solved by adapting our optical contacting methods [82] to tune the
resonance frequency with an accuracy of 10 MHz. The cavity resonance frequency can be
further fine-tuned by placing it in a temperature-controlled enclosure that is also required
to create a well-defined blackbody-radiation environment [56]. To estimate the clock in-
accuracy due to detuning from themagic wavelength condition, we assume a lattice depth
of 100 Erec [149], which will lead to a cavity frequency variation of ∼1.3 MHz caused
by coupling light into the cavity. With these assumptions, we obtain a clock frequency
variation of 2 mHz [150], corresponding to a fractional clock accuracy of ≈ 5 × 10−18.
We believe that the largest contribution to the cavity frequency variation is the mirror
loss, which can be reduced by more than an order of magnitude when using mirrors with
<10 ppm loss. This reduction would improve the frequency stability by an order of magni-
tude better, assuming that reducing themirror loss would proportionally reduce the cavity
frequency variation. The necessary temperature control to minimize the black body shift
uncertainty reduces the frequency fluctuations caused by environmental changes to the
same level. With these improvements, we project a possible clock accuracy below 10−18,
which would let state-of-the-art 2D or 3D optical lattice clocks make use of the scaling
advantage provided by our cavity lattices.

Finally, we characterize the long-term stability of the cavity lattice depth by measuring
the cavity transmission. The Allan deviation of the transmitted power as a function of
the averaging time is shown in Fig. 5.11(b). We observe a fractional stability below 10−3

for typical ∼20 s cycle times of quantum gas microscope experiments. Furthermore, the
transmission of cavity 2 is more stable than the one of cavity 1, which is consistent with
the lower input power sensitivity observed in Fig. 5.11(a). By measuring the transmission
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and implementing a slow feedback loop on the cavity input powers, we could preserve the
stability over many experimental runs which would result in long-term-stable quantum
simulation parameters. The fractional stability of the tunneling rate t and the interaction
energy U roughly scale as (3/4)(σV /V ), where σV /V is the fractional uncertainty of the
lattice depth V . Therefore, we expect that it is feasible to achieve a long-term stability of
10−3 for t and U .

5.9 Conclusion

We have presented a new cavity-based experimental platform for scaling quantum sim-
ulators, quantum computers, and clocks based on neutral atoms trapped in optical lat-
tices. Our lattices increase the number of available lattice sites by more than an order of
magnitude compared to state-of-the-art free-space lattices [53]. Currently, most far-off-
resonant optical lattices are created using high-power Nd:YAG lasers. Here, our solution
opens new possibilities to create large and deep lattices at any desired wavelength sup-
ported by the cavity mirror coatings.

As a demonstration, we loaded strontium atoms into two-dimensional optical lattices
generated at 914.332 nm, which is well-adapted for narrow-line laser cooling of stron-
tium atoms. The lattice laser beams have waists of 489(8) µm and operate at a circulat-
ing power of 92 W. This circulating power is more than an order of magnitude larger
than commercially available laser power at this wavelength. Despite the large beam
waist, atoms are trapped in lattices as deep as 457Erec, corresponding to trap frequencies
of 116 kHz. In these non-magic optical lattices, we perform high-resolution clock spec-
troscopy. Extending the work of Refs. [151, 152], we show a highly sensitive method to
reconstruct the lattice intensity envelope from the local clock shift. The statistical uncer-
tainty of our reconstruction method shows that intensity deviations as small as 300 ppm
of the peak intensity can be resolved. From the reconstructed intensity map, we estimate
the size and shape of a future Mott insulator state and conclude that the state will consist
of 6× 104 atoms.

This atom number is more than an order of magnitude larger than in state-of-art 2D
optical lattices generated from free space laser beams [53]. The combination of high
resolution laser spectroscopy and deep non-magic lattices allows us to resolve different
motional carrier transitions of the lattices for the first time.

We use this capability to locally measure the sample temperature with high spatial res-
olution. The resolved carrier spectrum also provides a method to directly measure the
ground-band lifetime.

We observe ground-band and lattice lifetimes of 18(3) s and 59(2) s respectively, and
a long-term lattice frequency (depth) stability on the MHz (0.1%) level. Our results
demonstrate that there are no disadvantages of cavity-based far-off resonant optical lat-
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tices compared to free space, while allowing the creation of deep and large optical lattices
at wavelengths where the available laser power is limited.

These cavity lattices open up many new possibilities for analog and digital quantum
simulation, including controlled collisional phase gates [21, 27, 28], quantum simula-
tions of light-matter interfaces [17, 32, 33, 31] and quantum chemistry [34]. Moreover,
the strong reduction in harmonic confinement will reduce the finite size effects for any
optical lattice quantum simulator and will reduce the experimental time required for
measuring quantum many-body correlations.

The cavity lattices can also be used to improve the precision of lattice-based atom
interferometers and optical lattice clocks by providing more identical particles to reduce
the quantum projection noise. Our compact and stable cavity design will enable near-
future applications of optical atomic clocks that require hands-off operation outside of
laboratories such as in satellites and airplanes [153–156]. Finally, neutral atom arrays in
optical tweezers interacting via Rydberg states have become a promising candidate for
quantum computing [157, 158], but current array sizes have been limited to ∼400 sites
partly due to the high power requirement associated with creating larger arrays [159].
Our optical cavity lattice can be used to scale neutral-atom quantum computers to tens
of thousands of lattice sites.
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Chapter 6

Conclusion and Outlook

In this thesis, we started by describing the basics of light matter interactions, with a
focus on the unique properties of strontium as an alkaline earth metal atom, and then
described how these properties can be used to create new tools for quantum simulation.
These tools include an improved method for fast and robust laser cooling, the creation of
state-dependent lattices for the strontium clock states, and the development of a novel
cavity-based architecture for scaling optical lattices. In the main chapters of this the-
sis, we reported on the construction of a strontium quantum simulator that combines
all of these tools. With these advancements, our strontium quantum simulator is now
uniquely equipped to implement several new proposals for quantum simulation, includ-
ing the simulation of nanophotonics and quantum chemistry, as well as collisional phase
gates in quantum computation. To finish this thesis, we now describe the future of our
quantum simulator.

The next piece to complete our quantum simulator a quantum gas microscope to imple-
ment single-site imaging andmanipulation. A necessary step for quantum gas microscopy
is to prepare atoms in a single layer of a 3D optical lattice. If this process, known as slic-
ing, is not performed, then the finite focal depth of the quantum gas microscope, which is
larger than the spacing between the 2D layers, would result in a blurred image. We plan
to implement slicing using the metastable and magnetically sensitive 3P2 state. Starting
with a 1D optical lattice in the z-direction, we will apply a magnetic field gradient in
the same direction, such that driving the 1S0-3P2 transition will excite the atoms only in
within a certain range of z-coordinate. The excited 3P2 states will then be lost from the
trap due to inelastic collisions. In this way, we can excite all but a single layer of atoms,
and then turn on the lattice in the x-y plane to prepare a 2D lattice. This procedure has
already been successfully used to achieve single-site imaging of ytterbium [98], and it is
expected to work similarly well for strontium.

At the time of writing this thesis, all the necessary components such as magnetic coil
systems and 3P2 laser systems have been incorporated into our setup, and the spec-
troscopy of the 1S0-3P2 transition in both bosonic and fermionic components is currently
being performed. Apart from our goals, the spectroscopy of these states is interesting on
its own, as it is relatively poorly understood despite the use of these states in proposed
schemes for quantum computation. The other key component of the quantum gas micro-
scope, the high resolution objective, has also been characterized [109], and the mount
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design has been finished. Upon completing the preparation and final installation of the
microscope, our setup will be the first demonstration of the ability to image and address
individual strontium atoms, which will have a significant impact on future realizations of
atomic clocks, quantum computation, and quantum simulation schemes.

After adding the quantum gas microscope to the set of tools described in this thesis,
the experiment can take on many different directions. An especially suitable one is simu-
lating nanophotonic physics by creating an analog of a single emitter coupled to a bath,
as described in Chapter 2. A near-term goal in this direction is studying bound state
physics. When coupling the emitter into the band gap (where the density of states is
zero), the existence of a bound state [160] is expected. In such a state, the bath parti-
cle remains at the emitter position, with its probability density decreasing exponentially
away from the position of the emitter. Bound states in 1D have recently been realized both
in a photonic crystals [161] and in a cold atom analog using rubidium [19]. However,
our simulator will enable direct spatially-resolved imaging of the bound state, pushing
the limits of what can be observed in experiments with bound states. Moreover, bound
states in 2D can be realized for the first time, paving the way to realize strong and con-
trollable long-range dispersive atom-atom interactions in 2D [162]. These bound states
will considerably enrich the quantum simulation toolbox, and will enable novel scenarios
in quantum many-body simulation, such as the simulation of quantum chemistry [34].
In the long-term, unprecedentedly long-lived subradiant states may be engineered by
tailoring the emission direction and dynamics of multiple emitters in 1D and 2D. Such
extremely long-lived subradiant states have many potential applications in both metrol-
ogy and quantum computation [163] because of the extremely low decoherence rates
that they enable.
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Appendix A

Cavity lattice potential - fit function derivation

In this Section, we derive the fit function used in Chapter 5, describing the spatially de-
pendent detuning that is resonant with the clock transition.

The energy shift of each clock state can be decomposed into two parts: a shift induced
by the ac-Stark effect and the zero-point vibrational energy in each lattice site. The for-
mer is given by −αkI(x1, x2)/2ε0c, where ε0 is the vacuum permittivity, I(x1, x2) is the
total lattice intensity from the both lattices, and k labels the state e or g. In orthogonal 2D
optical lattices where the two lattices have an identical beam waist w, we can write the
lattice envelope as I(x1, x2) = I0[e−2(x1−x0

1)2/w2 +(1+ε)e−2(x2−x0
2)2/w2 ], where ε specifies

the intensity balance between the two lattices, I0 is the peak intensity, and x0
j specifies

the position of the lattice intensity maximum. The second cause of the energy shift is the
zero-point vibrational energy of each state. Assuming that the atoms occupy the vibra-
tional ground state, the zero-point energy experienced by each state is given by hνst (xj)/2
per lattice axis, where νst (xj) specifies the on-site lattice trap frequency that state s expe-
riences along the lattice axis xj . The lattice trap frequency also depends on polarizability
and light intensity. Following the above definitions, νst (x1) = 2

√
νrecαkI(x1)/(2cε0h) and

νst (x2) = 2
√
νrec(1 + ε)αkI(x2)/(2cε0h).

The resonant condition occurs when the detuning with respect to the free space reso-
nance matches the additional shifts,

δres = 1
2ε0ch

(αg − αe)I(x1, x2)

+
√
νrecI(x1)

2cε0h
(
√
αe −

√
αg)

+
√
νrec(1 + ε)I(x2)

2cε0h
(
√
αe −

√
αg). (A.1)

In our experiments, we spectroscopically measure the peak trap frequency of g or e
to calibrate the peak lattice intensity, I0, and the polarizability ratio, αg/αe. We rewrite
the above expression with respect to these quantities, where the peak trap frequency is
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νt = 2
√
νrecαI0/(2cε0h). Then, we can rewrite δres as

δres = 1
νrec

(
νet
2

)2(αg
αe
− 1

)[
e−2(x1−x0

1)2/w2

+ (1 + ε)e−2(x2−x0
2)2/w2

]

+ νet (e−(x1−x0
1)2/w2)

2

(
1−

√
αg
αe

)

+ νet
√

1 + ε(e−(x2−x0
2)2/w2)

2

(
1−

√
αg
αe

)
, (A.2)

where we have chosen the e trap frequency νet rather than g, for convenience.

We fit the data described in Section 5.5 to the fit function shown in Eqn. (A.2) with
an additional fit parameter, which is a frequency offset f0. The fitted parameters are
x0

1, x
0
2, f0, w, and ε. We obtain the cavity mode waist of 489(8) µm with a reduced χ2 of

∼5, as discussed in the main text.
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Appendix B

Clock state polarizabilities

The polarizability of an electronic state is determined by contributions from the core and
valence electrons. The core part of the polarizability can be calculated in the single-
electron approximation, including random-phase approximation corrections [122]. The
valence part of the atomic state i is given by the sum of contributions over all electric-
dipole coupled states k. This part can be decomposed further into scalar, vector, and
tensor parts. For the clock states of 88Sr where both states have J = 0, only the scalar
part contributes [40], and the polarizability can be calculated according to [164]

αk = 2
3~
∑
l

|〈l|D|k〉|2ωkl
ω2
kl − ω2 . (B.1)

Here 〈l|D|k〉 is the reduced dipole matrix element between the clock state k and state l.
We use ωkl to denote the corresponding transition frequency. The valence part depends
as well on the frequency ω of the light field interacting with the atom.

We calculate the polarizability of the states 5s5p 1S0 and 5s2 3P0 at 914.332 nm in
Tab. B.1. From the total polarizabilities, we extract αg/αe = 1.18 ± 0.01, where g (e)
refers to 1S0 (3P0).
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l ∆E 〈l|D|k〉 αk

k = 5s2 1S0
5s5p3P1 14504 0.1510 0.53
5s5p1P1 21698 5.248 248.98
5s6p3P1 33868 0.034 0.01
5s6p1P1 34098 0.282 0.38
Other 5.8
Core 5.3
Total 261.0± 1.2

k = 5s5p 3P0
5s4d3D1 3842 2.671 −38.25
5s6s3S1 14721 1.968 85.92
5s5d3D1 20689 2.450 58.91
5p23P1 21083 2.605 64.44
5s7s3S1 23107 0.515 2.16
Other 42.07
Core 5.55
Total 220.8± 2.3

Table B.1 Contributions to scalar polarizability αk of the states 5s2 1S0 and 5s5p3P0 at
914.332 nm. The transition energies ∆E are listed in cm−1 and the reduced electric-
dipole matrix elements 〈l|D|k〉 are shown in atomic units. The energies and matrix
elements are taken from Refs. [165] and [121, 166], respectively. Here, Other refers to
contribution from states which are not listed explicitly and Core to the core polarizabil-
ity. Uncertainties for individual contributions are the result from propagating uncertain-
ties in the matrix elements and are not shown here.
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